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ABSTRACT 

We construct an automorphic realization of the minimal representation of 

a split, simply laced group G, over a number field. The realization is by a 

residue, at a certain point, of an Eisenstein series, induced from the Borel 

subgroup. This residue representation is square integrable and defines the 

automorphic theta representation. It has "very few" Fourier coefficients, 

which turn out to have some extra invariance properties. 
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I n t r o d u c t i o n  

In this paper, we are concerned with the construction of an automorphic 0- 

module, for a simple, split, simply laced group G, defined over a number field 

F. By an automorphic 0-module, we mean a global GA-module of the form 

-- ®~r,, where ir admits a GA-equivariant embedding into the space of auto- 

morphic forms on GA, and there is at least one local component 7r, with smallest 

Gelfand-Kirillov dimension (i.e. its Gelfand-Kirillov dimension is equal to one 

half of the dimension of the coadjoint orbit of highest weight in the Lie alge- 

bra). At a finite place v, the unique, class-one, minimal representation (i.e. with 

smallest Gelfand-Kirillov dimension) was constructed in [K], [KS] and in [S]. If 

v is archimedean, such a representation ~r, is considered in IV]. In this paper, we 

construct an automorphic realization of 0 = ®r~, where each local component 

7r, is class-one and of smallest Gelfand-Kirillov dimension. As in [K], we expect 

that all local components, of an automorphic 0-module, are minimal. We prove 

two properties of the automorphic theta representation, which manifest its rigid 

nature. Let G be of type Ei , i  -- 6, 7, 8, or of type Din. Let Q be the maximal 

parabolic subgroup, whose Levi part L has semisimple part of type Ei-1 or Din-1 

respectively. (Here, E5 means just Ds.) Let U be the unipotent radical of Q. 

(Note that U is abelian except in case Es, where it is a Heisenberg group.) We 

show that the Fourier expansion, of the elements of 0, along U, consists of the 

constant term and one more orbit of characters under LF, namely the orbit of the 

character which corresponds to the highest weight vector in LieUF. Denote this 

character by )¢0. In case Es, we consider the Fourier expansion, along U/Z, of the 

constant terms, along Z, of elements of the automorphic 0-representation. (Z is 

the center of U.) We get similar results. This is the content of Theorem 5.2. One 

more aspect of the rigidity of the automorphic 0-representation is the fact that  

the )(0-Fourier coefficient of an element of 0 is not only StabL0 (X0)F-invariant, 

but also StabL0 (~(0)A-invariant. (Theorem 5.4). Here L ° = [L, L]. Actually, the 

proofs of Theorems 5.2 and 5.4 are valid for any automorphic 0-module (i.e. of 

the form ®%, such that  at least one component, at a finite place, is the minimal 

representation). 

In this paper, we realize 0 as a residue representation of an Eisenstein 

series, coming from the Borel subgroup, and we prove that these residues lie 

in L2(Gk\GA) (Section 3). Moreover, 0 has an inductive nature. The constant 

term of 0 along U is, when restricted to L °, the direct sum of the trivial rep- 
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resentation and the 0-representation of L °, as realized (automorphically) above. 

This is done in Section 2 and Section 3. In Section 6, we consider case Dm in 

more detail. We prove that the automorphic theta representation appears with 

multiplicity one. We conclude from this the equality of the space of theta with 

the explicit lift of the trivial representation of SL2(A) to GA (G of type DA), 

through the theta series kernel coming from the dual pair (SL2, SO2m) inside 

Sp2,~ (rank 2m). 

Our main goal in constructing an automorphic 0 module for G is to obtain a 

"theta kernel" which serves to define a lifting of automorphic forms between mem- 

bers of dual pairs inside G, and thereby obtain interesting examples of automor- 

phic representations. For example, in [GRS], we have carried out such a program 

and considered the automorphic theta representation of G2, the three-fold cover 

of G2. (This representation was constructed by Savin in [S1].) We considered 

the dual pairs (SL3, Z3) and (SL2, SL2) inside G2. The restriction of 0 to SL3(A) 

(three fold cover) decomposes into a direct sum of irreducible automorphic repre- 

sentations, which are equivalent, at almost all places, to the theta representation 

of SL3 (see [P.PS]). The restriction to the dual pair SL2(A) × SL2(A) (three-fold 

cover for the first component) produces a decomposition of the form ~ 7r ® 0(Tr), 

with 7r running over the cuspidal representations of SL2(A), and 0(Tr) being the 

so-called cubic lifting of 7r. In a sequel to this paper we shall give a decomposition 

of 0 (of GA, G simple, split, simply laced) restricted to the dual pairs (G2, L) 

inside G, and determine when a cuspidal representation ~r of G2(A) lifts (via the 

theta kernel) to a cuspidal representation 0(~-) of Lb. Here the phenomenon of a 

"tower of liffings" takes place exactly as in the classical cases of the symplectic 

groups and the orthogonal groups (see [R]), namely 0(Tr) is cuspidal, if and only 

if 7r has a zero lift, via the theta kernel, to the previous steps in the following two 

towers: Es D E7 D E6 D D5 D D4 or Es D E7 D D~ D D5 D D4. In particular, 

it is possible to obtain a partition of the space of cusp forms on G2(A), which is 

determined by an appropriate lifting from G2 to L, or from L to G2. This is the 

framework in which the construction of an automorphic 0-module and the study 

of its properties are important for us. 

1. N o t a t i o n s  

(1.1). We start by setting some notations for the exceptional groups of type 

E6, E7 and Es. We assume that the groups are simply connected (and still denote 
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them by El; moreover, we will use a convenient abuse of terminology and speak 

of the group Ei, while we really mean a group of type El) .  We will consider 

isogeneous groups as well. This will be explicitly mentioned in the text. We shall 

label the eight simple roots of Es, ai,  1 < i < 8 as in [GS]. 

~I ~3 0~4 0~5 Oz6 0~7 OL8 
0 - - 0 - - 0 - -  0 - - 0 - -  O - -  0 

0 
~2 

S Given a positive root c~, we shall write (n l . - -ns )  for c~ = ~i---1 ni°~i with 
s ni _> 0. For the list of all positive roots, see [GS]. Given a root a = ~i=1 nic~i 

(positive or negative), x~ or x~ (r) or x(nl...ns)(r) will denote the one-dimensional 

unipotent subgroup corresponding to the root a. Since Es is a simply laced group, 

we have for all roots a and 

[ x~+~(Nl ,2r l r2)  c~ + ~3 is a root, [xo(r,), x~(r2)] ( 1 otherwise. 

Here N1,2 E {+l} and is chosen as in [GS] and [gl,g2] = g~lg21glg2  where 

gl, g2 E Es. 
We shall denote by w~, or wi, 1 < i < 8 the simple reflections in the Weyl 

group W(Es) of Es, corresponding to the simple roots ai.  In short, we shall 

write w ( i l  . . .ira) for wil w~2 . . .w{, , .  

To each simple root, there is an embedding of SL2 in Es. Each such embedding 

one-dimensional torus in Es corresponding to the torus ( t ) gives t_ 1 of SL2. a 
\ / 

We shall denote the image of this torus in Es, corresponding to the simple root 

ai,  1 < i < 8, by hi( t ) .  Thus a general torus element is 1-IS=l hi(t~), which we 

shall sometimes denote by h ( t l , . . . ,  ts). 

The action of the torus on the roots can be read from the Cartan matrix. 

Similarly, one can deduce the action of the Weyl group on the roots. 

We shall consider the group E7 embedded in the Levi part of the parabolic 

subgroup of Es obtained by deleting the root as. Similarly for E6. It is embedded 

in the Levi part of the parabolic subgroup of Es (resp. ET) obtained by deleting 

a7 and as (resp. aT). We note that E7 (resp. E6) when regarded, as above, as 

a subgroup of Es (resp. Es or ET) is still simply connected, so that our notation 

is consistent. See [BT] Cot. 4.4. 
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We shall also study the groups SO2m which we define as follows. Let Jm denote (1) 
the m x m matrix defined by Jm = .." . Define 

1 

SO~m = {g C GL2m: tgJ2mg = J2m and detg = 1}. 

We will label the simple roots in Dm (simply connected) as follows: 

0 . . . .  0 - - 0  0 

I 
0 
92 

We will use similar notations as in the exceptional groups case. Thus if/3 is 

a positive root we will write (n l " ' "  nm) for /3 = ~i~=1 nil3i. Also, if wa, or wi 

are the simple reflections corresponding to the simple root/3i,  we shall denote 

w ( i l . . ,  i~) = wil . . . w i .  We will denote by ha, (t), or simply hi(t),  when there is 

no confusion, the one-dimensional torus corresponding to embedding of the SL2 

attached to the simple root ~i. We set 

h( t~ , . . . , tm)  = n h~(t~). 
i = 1  

Let O2.~ = {g E GL2m: tgj2,~g = J2.~}. Dm is a central double cover of SO~m = 

[O2~, O2~]. Recall that over a field k, there is an exact sequence 

s o 2 ~ ( k )  ~ s o 2 m ( k )  ~ k * / ( k * )  2 --, 1. 

We will also need the action of the various Weyl groups on the torus. Since we 

are concerned with simply laced groups, we have, for simple roots a,/3, 

{ ha ( t - l ) ,  /3 = a', 
w~hg(t )w21 = ha(t)h~(t) ,  {~,/3} = -1 ,  

ha(t), (~,/3) = o. 

In general, for a split reductive group G we denote by ¢(G) the set of roots, 

by ¢+(G) the set of positive roots and by A(G) the set of simple roots. We will 

usually denote the highest root by ~. Also, we sometimes denote by B(G)  (or 

just B) the Borel subgroup of G and, for a parabolic subgroup P,  we denote by 
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pp half the sum of positive roots which occur in the radical of P. For P = B, 

we let p = PB. We use the standard analogous notation on the Lie algebra side. 

g = Lie(G); g~ denotes the root subspace corresponding to the root a ,  spanned 

b y X ~ .  

Remark: The notation above and in the next subsection is meaningful when the 

group G is replaced by another simple group with the same Dynkin diagram. 

(1.2). We will consider various maximal parabolic subgroups. More precisely, 

given a reductive algebraic group G we let. P(G) = M(G)V(G) denote the max- 

imal parabolic subgroup of G whose unipotent radical is V(G) and whose Levi 

par t  is given by 

(a) G : Es,  

(b) V : ET, 

(c) a : E6, 

(d) G = Din, 

M(G) = GL1 • ET, 

M(G) = GL1 -E6, 

M(G) = GL1 • Ds, (almost direct products), 

M(G) = GL1 • A, , -1.  

We will need another parabolic subgroup of G for our constructions. Given G 

as above let Q(G) = L(G)U(G) be the maximal parabolic subgroup of G whose 

Levi par t  is: 

(a) a = Es,  
(b) a = ~:T, 

(c) a = ~6, 

L(G) = GL1 • ET, 

L(G) = GL1. E6, 

L(G) = GL1 • Ds, 

(d) G = Din, L(G) = GL1. Din-1 (almost direct products). 

Finally, consider the maximal parabolic subgroup PH~is(G) = E(G)H(G), 

whose radical is a Heisenberg group. Its center is the root subgroup which 

corresponds to the highest root/3. 

(a) G = Es, E(G) = GL1 • E7, 

(b) G = ET, E(G) = GL1- D6, 

(c) G = E6, E(G) = G L , .  GL6, 

(d) G = Din, E(G) = GL1 • (A1 x Dm_2)(almost direct products). 

Remarks: (1) The group E6 (resp. Dm for m _> 4) has two associated parabolic 

subgroups with Levi part  GL1 .D5 (resp. GL1 "Am-i) .  Since we will need both, we 

shall agree that  P(E6) will denote the parabolic subgroup obtained by deleting 

the root a6. If this is the case, Q will be the other maximal parabolic subgroup 

whose Levi part  is GL1 • Ds, the one obtained by deleting a l .  As for Dm, we 

shall agree that  P(Dm) will be obtained by deleting the root /32 in whatever 
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Dm we choose. The other associated parabolic subgroup will be denoted by 

Pa(Dm) = La(D,~)Ua(Dm). As for the other cases, P (Es)  = Q(Es) is obtained 

by deleting the simple root as.  P(Ez) = Q(ET) is obtained by deleting a7 and, 

finally, Q(Dm) is obtained by deleting the root/3,~. 

(2) Notice that  except in the case of Es, U(G) is an abelian group. 

(3) We have PHei~(G) = P(G) for G = E7, Es. H(G) contains as  in case 

G = Es, a l  in case G = ET, a2 in case G = E6 and ~m-1 in case G = D,~. 

For a maximal  parabolic subgroup P of G we denote by ap the unique simple 

root, which belongs to the radical of P. 

We will need to study the space of double cosets P(G)\G/Q(G) when G equals 

Din, E6, E7 or E8. We denote the number of these double coset by n(G). 

LEMMA 1.1: 

(a) For G = Es, n(G) = 5 and as representatives we may choose: e, w(8), 

w(876542345678), w(87654231456734254316542345678), and the Weyl 

element Wo with minimal length which sends all the roots in U(Es) to 

their negative. 

(b) For G = ET, n(G) = 4 and as representatives we may choose: e, W7, 

w(7654234567) and the Weyl element wo with minimal length which sends 

all roots in U(E7) to their negative. 

(c) For G = E6, n(G) = 3 and as representatives we may choose: e, w(65431) 

and w0 = w(6543245613425431). 

(d) For G = D,~, n(G) = 2 and as representatives we may choose: e, and 

W2 W 3 " ' ' W r n .  

Proof The proof is straightforward. I t  is clear that  the representatives of 

P(G)\G/Q(G) can be chosen in W(M(G)) \W(G) /W(L(G)) .  We make a canon- 

ical choice. Namely we choose the representatives to be the Weyl elements w 

with minimal length mod W(M(G)) on the left and W(L(G)) on the right. 

In other words if w = wilwi 2...wi~ with g = g(w), then wil ~ W(M(G)),  

wit ~ W(L(G)) and using the relations among the simple'reflections in W(G), 

if w = wjlwy 2 ...wj~, then il = Jl and ie = je. To find all such Weyl ele- 

ments, we s tar t  by writing the long Weyl element wo in W(G)/W(L(G)) ,  say 

wo = wi1".wi~. Doing so, all the representatives of W(M(G)) \W(G) /W(L(G))  

are all Weyl elements of the form wi~ " "wi t  with j > 1 such that  this word is 

minimal mod W(M(G))  on the left. (It is already minimal mod W(L(G)) on 
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the right.) Let us illustrate these ideas in E6. Recall that the only relations in 

W(E6) are the following. If a~ and aj are not adjacent in the Dynkin diagram, 

then w~ w~ = w~ w~,, and if they are, then w~iw~ w~ ~ = w~ w~w~j. Also 

w 2 = 1, for all ai,  1 < i < 6. Using these relations, we see that the long Weyl O~ i 

element in W(E6)/W(L(E6)) is w0 = w(6543245613425431). Indeed this Weyl 

element has length 16, which is the dimension of U(E6), and one can check that 

Woa < 0 if and only if a is a root in U(E6). Thus the minimal Weyl elements 

rood W(M(E6)) on the left will be e, w(65431) and wo itself. Hence these are 

the representatives of W(M(E6))\W(E6)/W(L(E6)).  The other cases are done 

in a similar way. II 

Remark: This lemma remains valid when G is replaced with a simple group of 

the same type (i.e. with the same Dynkin diagram). This is clear. 

2. On  poles  o f  E i sens t e in  series  

In this section, we will study the poles of certain Eisentein series on the groups 

G ~- Dm for m > 4, E6, E7 and Es. We will study the pole at a specific point. 

The method we use is as in [KR1], i.e. we will study the constant term along 

the unipotent radical U(G) where G is as above. We will use the results of this 

section later on in the definition of the automorphic theta representation. 

Let F be a number field and let A be its ring of adeles. Let R = R(G) denote 

a maximal parabolic of C. Let 5t~ denote the modular function of R. For s E C 

set I(s) = I(G, s) T'~AC(A) 5~ +1/2. . . . . .  R(A) Consider the corresponding Eisenstein series 

defined first for Re(s) large, by 

ER(G) (g, f,  s) = E f(~/g, s) 
7eR(F)\G(F) 

for g C G(A) and f E I(s). This series converges absolutely for Re(s) large and 

admits a meromorphic continuation to the whole complex plane. It has a finite 

number of poles after a suitable normalization. 

Let K(G) be the standard maximal compact subgroup of G(A). From now on, 

we shall restrict ourselves to standard sections f in I(s). Thus, f is standard if 

it is K(G) finite and its restriction to K(G) is independent of s. 

Given f = ~ f~ in I(s),  we denote by S the set of places such that  f~ is 

unramified for ~ ~ S. S may be the empty set. We denote by ( , (s )  the local 

zeta factor at the place t~ and we set @(s) = I-L~s (j~(s). 
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Given a Weyl element w E W(G) we form the intertwining operator given, for 

Re(s) >> 0, by the intertwining integral, 

(M~(s)f)(g,s)= / f(wng, s)dn 
N~(A) 

where N~ is the group generated by {x~(r): a > 0 and x~.(r) q~ R}. Thus M~(s) 
is factorizable and Mw(s) = I]~ M~,.(s). If f .  is K(G.) fixed, normalized so 

that f.(e, s) = 1, and f .  is the K(G.) fixed vector in the image of M~,.(s) 
normalized so that f.(e, s) = 1, then we have 

M~,~(s)f. = L~(w, s)f.. 

Set 

We will also denote 

vq~5" 

\yES / v~S 

Given G, R and f as above, we form the normalized Eisenstein series defined 

as follows. Denote by Ls(G, R, s) the normalizing factor of En(a)(g, f, s). We 

denote 

E*R(a)(g, f, s) = Ls(G, R, s)ER(a)(g, f, s). 

By definition, Ls(G, R, s) is the denominator of Lls(wo, s), when written as a 

quotient of products of zeta factors (after simplification), where w0 is the repre- 

sentative of the big cell in R\G with minimal length. 

To make things clearer, we start with two computational lemmas. The first 

lemma is easy to verify. 

LEMMA 2.1: We have: 

(2) (1-I hj(tj)/= It71 is, 

(4) (~Q(E6)(yI6=l hj(t j))  = It1] 12, 
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(5) ~p(Dm)(I-lj~=,hj(tj)) = I t . I  ~ m - '  (m _> 3), 

) (6) 5Q(D~) l-Ij=l hi(tj) = Itml 2m-2 (m >_ 3). 

Next we compute the normalizing factors for certain Eisenstein series we use. 

We have: 

LEMMA 2.2: The factor Ls(G, P, s) equals: 

(a) If G =Dm 

(b) If  G = E6 

(c) I f  G = ET 

[.] 
I-[ ;, (('-- '). + + ' -  
k----I 

~s(12s ÷ 6)~s(12s ÷ 3). 

~s(18s + 9)~s(18s + 5)~s(18s + 1). 

(d) If  G = Es 

~z(29s + 29/2)@(29s + 19/2)~s(29s + 11/2)@(58s + 1). 

(e) For G = Dm, the factor Ls(G, Q, s) equals 

( s ( ( 2 r n -  2)s + 1 ) ~ s ( ( 2 m -  2)s + m - 1 ) .  

Proo~ The proof uses the method of Gindikin-Karpelevich as explained in 

[PSR1] Proposition 5.2. We rewrite their formula as follows. Let F~, be a local 

field. Let R be a maximal parabolic subgroup in G. Parameterize the torus of G 

as f i r  hr(t~). Then there exist unique positive integers g and k such that 

iTa(1-I h~(t~)) =Its[ k, t~ C F*. 

The numbers g and k can be read in our cases from Lemma 2.1. Let w E W(G), 

and a = En~a~, if G = E6, E7 or Es and a = En~3~, if G = Din, be a positive 

root. Then using Proposition 5.2 in [PSR1] we have: 

i (2.1) f.(wn, s)dn= I-[ (kn, s ~ En.)" 
N.(F.) a>0  ¢, + 2 + l -  

w - l a < 0  
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T .G(F. )  ~R+1/2 Here f ,  is the un ique / t ' ,  fixed vector function in lnoR(F~ ) normalized so 

that  f ,(e, s) = 1. To obtain Lemma 2.2 one can take w = wo to be the Weyl 

element in W(R)\W(G)  as stated above. I 

For G = D,~, E6, ET, Es, let 

m--3 G = D m ,  
2rn-- 2 

s(G) = 1/4, G = E6, 
5/18, G : E7, 
19/58, G = Es. 

There is a Weyl element w0, such that  

where .~s~ is the real unramified character of the torus, which corresponds to 

the subregular unipotent orbit in /(7. See IS, p. 143]. For example, w0 = 

w(56), w(567), w(5678) in cases E6, E7, Es respectively. 

We are now ready to prove: 

THEOREM 2.3: The Eisenstein series E*p(G) (g, f, s) has at most a simple pole at 

s = s(G) and it is obtained for some choice of section f E I(G, s). 

Proof: As was mentioned before, we will study the constant te rm of 

Ep(G )(g, f, 8) along U. The proof is similar to the cases studied in [KR1]. 

Let us briefly explain the idea. Write P, Q etc. for P(G), Q(G) etc. For 

g C L(A) we have 

/ 
U(F)kU(A) 

For h C G(A) we have 

Z = 
?EP(F)\G(F) 

Ep(ug, f, s)du = / ~ f(~/ug, 8)du. 

U(F)\U(A) ~/EP(F)kG(F) 

Z f(w h,s). 
wEP(F)\G(F)/Q(F) 5e(w-I P(F)wNQ(F))\Q(F) 

Since Q = LU we can write w - l P w  M Q = LwU w, where if X is a subgroup of Q 

then X w = w - l P w  :1 X.  Thus L w is a maximal parabolic subgroup of L. Write 

Z = Z Z 
(w-IP(F)wNQ(F))\Q(F) Uw(F)\U(F) Lw(F)\L(F) 
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Plugging all this in the constant term we obtain 

Ep(ug, f, 8)du 

U(F)\U(A) 

--E / E E 
w U(F)XU(t.) u~'EU~(F)kU(F) 5EL~(F) \L (F)  

w U~,(F)\U(A ) 5EL'~(F)\L(F) 

.f ( wu ~'u@ , s )du 

Here w runs over P(F)\G(F)/Q(F).  Factoring 

J. --:. :. , 

~(F)\U(A) ~(A)\U(A) ~(F)\U~(A) 

using the left invariance properties of f and sett ing the measure of F \ A  to be 

one, we obtain 

(2.2) U(F)\U(A) ~ U~(A)NU(A) 

= E E (M~(s)f)(@' 8) = E EL~ (g, M~(s)f, s'). 
w 5 w 

Here w and 6 are summed as above. Also, EL~ is the Eisenstein series of the 

group L obtained by inducing from the maximal  parabolic subgroup L ~ and we 

unders tand tha t  Ei~(g,M~(s)f ,  8 t) = M~(s)f  if L ~ = L. Finally, s ~ is some 

linear t ranslat ion of 8 and we view M~(s)f  as a section on L by restriction. We 

will now use this formula for the constant  term for our cases. We start  with: 

(a): G = D m  for m > 4. This case was actually done in [KR1]. We rewrite 

formula (1.2.14) in [KR1] as 

(uh(a)g, :, 8)du = Ep(Dm) 

U(F)\U(A) 

(2.3) 2 m -  2 1 
M(~m-2)(s+l/21Ep(D~._ll(g,f, y -m-~8  + 2 m - - 4 )  

2m - 2 
+ M-(2m-2)(s-1/2)Epo(Dm_l) g, Mv(s)f, 2m - 4 

1) 
s 2m-- 4 " 
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Here h(a) = h(a, a, a 2 . . . . .  a 2) is a general element of the connected center of 

L(Dm) and v is the second Weyl element as appears  in L e m m a  1.1(d). Also 

we view f and M , ( s ) f  as sections on Din-1 by restriction. Notice tha t  when 

s = s(Dm) then 

2 m -  2 1 2 m -  2 1 r n -  4 
2m _ - ~ s +  2 m ~  -- 1/2 and 2 m -  4 s 2 m ~  - 2 m - ~  - s ( D m - 1 ) .  

/ 
Thus  by induction,  E*p(Dm_l)[g'f'2m-2s2m-4 - 2--~-4) has a simple pole at  s = 

% 

s(Dm) and the residue is the constant  function. Following [KR1] we m a y  deduce 

tha t  after  a suitable normalizat ion,  the second t e rm on the right side of (2.3) can 

have at  most  a simple pole. Compar ing  the powers of lal, we see tha t  cancellations 

of the poles is not  possible for s = s(Dm), m _> 4 and hence the theorem follows 

in this case. 

(b): G = E6. Once again, we compute  the constant  t e rm along U to obta in  

(using L e m m a  1.1) 

(2.4) 

f Eg(a)(uh(a)g, f, s)du = la 124s+12EQ(DS) (g, f, ~S "~-~) 

U(F)\U(A) 

-12s+9 (g, M~(s)f, 12 1 + ]a] Ep(D5 ) -- -~) + -~s lal-4Ss+24(M~o(s)f)(g,s). 

Here h(a) = h(a 4, a 3, a 5, a 6, a 4, a2), a "general" element of the center of the  

Levi par t  of Q(Ea) ,  and g C D5. Also, v - w(65431) and Wo is as defined 

in L e m m a  1.1. Thus  (2.4) is obta ined by the general scheme as described 

in the beginning of the proof  (see (2.2)). Let us sketch some of the details 

here. To obta in  the first Eisenstein series we compute  L ~ for w -- e. Thus  

L e = P n L  = Q(Ds) and U e = P n U  = U. To compute  s ~, we proceed as 

(° ) follows. First ,  by L e m m a  2.1, we have 5Q(D~) I-[j=2 h j ( t j )  -- It61 s. Indeed, 

recall t ha t  now the D5 is the subgroup of E6 obtained by deleting a t .  On the 

o t h e r h a n d ,  f (  6 ) l-Ij=2 hj(tj)g,s = tt6[ 12(~+1/2). Thus s '  satisfies the equat ion 

1 The  other  cases are done in a similar 12(s + 1/2) = 8 ( s ' +  1/2),  i.e. s '  = 3s + ~. 

way. Indeed when v = w(65431) it is easy to check tha t  v - l a l  = a3; v - l a 2  = 

(111100); v - l a 3  = a4; v - l a 4  = a5; v - l a 5  = a6 and v - l a 6  < 0. Thus  the 

simple posit ive roots  in the Levi par t  of L ~ are a l ,  a3, a4 and a5 and hence 

L ~ = P(D5) .  Since v a  < 0 for a = (100000); (101000); (101100); (101110) 
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and (101111) then U~'\U is the five-dimensional unipotent  subgroup of U gen- 

erated by these 5 roots. To compute  s', we notice tha t  by Lemma 2.2 we have 

(I]~=2hj(tj)) --It2l s and also ~P(Ds) 

f f vuHhj ( t j ) , s  du=lt2112(s+a/2)-3 f(vu, s)du 
U~\U j = 2  U" \ U 

where [t2[ -3 is obtained from the change of variables in U"\U. Thus 

12(s + 1/2) - 3 = 8(s'  + 1/2) which implies tha t  s' = ~ s  - ~. Finally the 

computa t ion  of the powers of ]a] are done in a similar way. For example,  in the 

case of 'u, = v = w(65431), one can check tha t  vh(a)v -1 = h(a, a 3, a 2, a 3, a, a -1) 

(see (1.1)). Also, we have a contr ibut ion of ]a115 from the change of variables in 

Uv\u. Since (~p(E6)(h(a, a 3, a 2, a 3, a, a - l ) )  = [a[ -12 we obtain as the power of ]a[ 

the number  - 1 2 ( s  + 1/2) + 15 = - 1 2 s  + 9. It follows from (2.1) tha t  for u ~t S 

( . (12s  + 6 -  End) 
{~~.M.,.(s)f.}(e,s) = H (~ (12s+  7 -  End)" 

~>0 
v-- lc~<0 

Since the root.s c~ > 0 such that  v - a a  < 0 are 100000; 101000; 101100; 101110 

and 101111 we see tha t  
~s(12s + 1) 

L~(v, s) - ~s(12s + 6) 

Taking into account the normalizing factors of the Eisenstein series appearing in 

L e m m a  2.2 (see Lemma 2.2), we get (set a = 1) 

(2.5) 
f . 3 s 1 E*p(G)(ug, f ,s)du= EQ(D~)(g,f,-~ + -~) 

U(F)\U(A) 

+ E*p(D~ ) (g, A.(s)f, 
12 

- ~)  + (s(12s - 2)¢s(12s - 5) .  (Awo(S)f)(9, s). 1 

T 
Define 

(A~:o(S)f)(g's) = ( H  ¢ . ( 1 2 s -  2)<.(12s- 5)) -1 ( A . o ( S ) f )  (9, s). 
yES 

Then  

(2.6) Cs(12s - 2) (s(12s  - 5)A~oo (s) = ¢(12s - 2)¢(12s - 5)A*0(s ) 

where ~(s) denotes the complete zeta function i.e. ~(s) = l--I~ ~.(s).  We need: 
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LEMMA 2.4: Given f E I(s), the intertwining operators Av(s) and A*o(S ) are 

holomorphic at s = s(G) = 1/4. 

We will prove this l e m m a  later. 

Plugging (2.6) in (2.5) and comput ing  the residue of (2,5) a t  s = s(G) = 1/4, 

we see tha t  the factor ~(12s - 2) l (12s  - 5) A* (s) f  has at  most  a simple pole w o  

at  s = 1/4 and is nonzero for some choice of section f .  Also E*p(D5 ) can have at  

most  a s imple pole at  s -- 1/4. This follows from case (a) when G = Ds. As in 

case (a) we may  deduce tha t  there is no cancellation of poles by compar ing  the 

power of la[ at  s -- 1/4. Thus  the theorem follows for this case. 

(c): G = ET. Here according to L e m m a  1.1(b) there are 4 representat ives  for 

P(G)\G/Q(G) .  Let Vl = WT, v2 = w(7654234567) and w0 as defined in L e m m a  

1.1(b). The  constant  t e rm  along U equals 

(2.7) 

f Ep(a) (uh(a)g, f ,  s)du 
U(F)\U(A) 

18 2 =lalS4s+27 f(g,  s) + [a[lSs+11Ep(E6)(g, My1 (s)f, -l~s + ~-~) 

+ ~ ~Q(E6) g , M , ~ ( s ) f , - ~ s -  i2  

+ lal-54s+27 (M~o(s) f  )(g, s). 

Here h(a) = h(a  2, a 3, a 4, a 6, a 5, a 4, a 3) is in the center of L(G) and g E E6(A). 

Since v i l l i  -- a i  for 1 < i < 5, v~-1c~6 > 0 and v~-la7 < 0 we see tha t  L vl -- 

P (E6) .  Also it is clear tha t  U vl \ U  is generated by the root  x~7 (r). As for v2, we 

have v~-la l  > 0; v~-1~2 - a3; v2-1~3 -- ~2; v21a i  -- a i  for i -- 4, 5, 6 and v~-la7 < 

0. Thus  L "2 = Q(E6).  Here U'2\U is the unipotent  subgroup of U genera ted 

by the following 10 roots: (0000001); (0000011);(0000111); (0001111); (0011111); 

(0101111); (0111111); (0112111); (0112211) and (0112221). The  points  s '  and 

the powers of I a[ are figured out as in case (b). Also as in case (b) one can easily 

check tha t  

L~(vl ,s)  - @(18s ÷ 8) 
@(18s  + 9) 

and tha t  

L~(v2, s )=  @(18s)@(18s+4) 
@ ( 1 8 s + 5 ) @ ( 1 8 s +  9)" 
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Multiplying (2.7) by Ls(G, P, s) (see Lemma 2.2) and taking into account the 

normalizing factors of the Eisenstein series we obtain 

(2.8) 

E*p(G) (ug, f, s)du 
U(F)\U(A) 

18 2 
=Ls(G, P, s)f(g, s) + ~s(18s + llE~(E~ ) (g, A., (slf, -~s + -~) 

. 1 8  2 
+ ~s(18S)EQ(E6 ) (g, M.~(s)f, -~s - -~) 

÷ (s(18s)(s(18s - 4)¢s(18s - 8)(A~ o(s)f] (9, S). 
\ / 

Define 

--1 

(A*o(S ) f ) (g , s ) - - (~s (~ (18s ) (~ (18s -4 )~ (18s -8 )  (Awo(S)f)(g,s) • 

Then 

(2.9) (s(18s)~s(18s - 4)(s(18s - 8)Awo (s) = ~(18s)~(18s - 4)~(18s - 8)A* o (s). 

Later we will prove: 

LEMMA 2.5: Given f C I(s), the intertwining operators Av,(s), A,~(s) and 
A*o (s) are holomorphic at s = s(G) = 5/18. 

Next we plug (2.9) in (2.8) and compute the residue at s = s(G) = 5/18. Notice 

ls 1 for s 5/18 and that - 1~ s(E6). As before, we that  i~s ÷ ~2 > ~ = ~2 s(ET) --- 
get a nontrivial residue at s(G) from the factor containing ¢(188 - 4). Also from 

case (b) we see that E~(E~ ) can have at most a simple pole at s = 1/4. Indeed, 

recall that  in E6 the parabolic subgroups P and Q are associated and hence the 

corresponding Eisenstein series share the same analytic properties. Once again, 

comparing the powers of lal we see that no cancellations are possible. 

(d): G = Es. In this case, we have 5 representatives for P(G)\G/Q(G). Let 

vl, v2 and v3 denote the second third and fourth representatives as they appear 

in Lemma 1.1(a) and let w0 be the element defined in Lemma 1.1. We have, for 
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all g E Ev(A), 

(2.1o) 

Ep(G) (uh(a)g, f, s)du 
U(F)\U(A) 

29 1 --la158~+29f(g, s) + la129~+z~/2Ep(g~)(g, M~I (s)f, -~s + ~) 
29 s~ + laI12EPH~..(E,)(g, M,~(s)f,-~ / 

29 1 
+ lal-29s+31/2Ep(ET)(g,M.3(s)f, ~ s  - 4) 

+[aI-SS'+29(M~o(s)f)(g,s). 

Here h(a) = h(a 2, a 3, a 4, a 6, a s, a 4, a 3, a 2) is in the center of L(Es). The case of 

vl is exactly as in the case of vl in G = E7. For w = v2, we have that v~-lal > 0; 

V21Ct2 = 0~3; ?.'21a3 = 0~2; V21Oli = O~i, i = 4,5,6,7 and v21c~s < 0. Thus 

L "~ = Q'(ET). Also U'2\U is the unipotent subgroup of U generated by the 

roots (00000001); (00000011); (00000111); (00001111) (00011111); (00111111); 

(01011111); (01111111); (01121111); (01122111); (01122211) and (01122221). As 

for v3 we have: v31at = 0~6; V31C~2 • 0~2; vala3 = a s ;  ~u310z4 = 0~4; v310~5 ~ 0~3; 

V31a6 = a l  V31a7 > 0 and v31a8 < O. Thus L "3 = P(ET). Finally let us just 

mention that Uv3\U is a maximal abelian subgroup of U. We omit the details. 

We have: 
@(29s + 27/2) 

n l s ( v l , s )  = 
@(29s + 29/2) 

and 

and 

L~(v3, s) = 

L~(v2, s)= @(29s+7 /2 )@(29s+1 /2 )  
@(29s + 29/2)@(29s+ 19/2) 

@(29s - 7/2)@(29s+ 1/2)@(29s+9/2)@(5Ss) 
@(29s+ 11/2)@(29s+ 19/2)@(29s + 29/2)@(58s+ 1)" 

We will also need the normalizing factor for the Heisenberg Eisenstein series in 

E7: 

Ls(ET, PH~i,, s) = ~'S(17s + 17/2)@(17s + 11/2)@(17s + 7/2)@(34s + 1). 

Multiplying (2.10) by Ls(Es,  P, s) and taking into account the normalizing factor 
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of the other terms we obtain 

(2.11) 

f E*p(G) (ug, f, s)du 
U(F)\U(A) 

, 2 9  1 
=Ls(G, P, s)f(g, s) + @(58s + 1)Ep(E7 ) (g, Avl (8)f, ~-8 S -{- "~) 

* ( 29S) @(58s)E~,(E,)(g, Av3(s)f , -~s-29 4)1 + EQ'(ET)\g'Av2(s)f'-~ ] + 

- 17/2)@(29s - 27/2)@(58s) (Awo (s)f) (g, s). + @(29s 9/2)@(29s 

Denote the coefficient of (Awo(s)f)(g, s)in (2.11) by -Ls(wo, s). Define 

.:o:.>:: (H 
. 6 S  

Then Ls(wo, s)A,,o(S ) = L(wo, s)A*o(S) where L(wo, s) -- I - [ ,L-(wo,  s). 

Plugging this into (2.11) and arguing as in the previous cases we are done once 

we prove: 

LElVIMA 2.6: Given f E I(s), the intertwining operators Av; (s), j = 1, 2, 3 and 

A*o(S ) are holomorphic at s = s(G) = 19/58. 

To complete the proof of Theorem 2.3 we need: 

Proof of Lemmas 2.4, 2.5 and 2.6: To prove these lemmas it is enough to show 

that  given a Weyl element w and a place u E S, the local intertwining operator 

Mw,,(s)f ,  is holomorphic at s = s(G) for any choice of a local standard section 

f .  E Ind ' (G)  ~s+1/2 vp(G) . Here w is one of the Weyl elements appearing in those 

lemmas. First assume that  w is v in case G = E6 or Vl or v2 in case G = E7 or 

w i s  vl o rv2  or v3 in case G = Es. Write w = w(il) ' . .w(i~) as a p r o d u c t  of 

simple reflections such that  g(w) = r. Thus 

M~,~. = Mw(i.),v o . . .  o M~(q),~,. 

Due to this factorization it follows from the usual properties of GL2-intertwining 

operators that  the poles of M,o,. are controlled by the poles of 

(2.12) H 
a > 0  

w--la<o 
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Here a = En~a~ and k and n ,  are given by Lemma 2.1. We will check on a 

case by case basis tha t  for s = s(G), kn~s + kne/2 - En~ _> 1 for all a > 0 

with w - l a  < 0. If  G = E6 then w = v and k -- 12 and n~ = 1 (since v = 

w(65431) and, as mentioned in (b), the roots 100000; 101000; 101100; 101110 

and 101111 are all roots  (~ > 0 with v-l(~ < 0). Thus,  for s = s(E6) = 1/4, 

kn~s + kne/2 - En~ -- 9 - Enr  >_ 1, for all relevant roots. When  G = E7, we 

have for s = s(ET) = 5/18 tha t  k n ~ s + k n ~ / 2 - E n ~  = 1 4 n 7 -  En~. When  

w = w7, n7 = 1 and En~ = 1 and 14n7 - En~ _> 1. For w -- v2, it is easy 

to check tha t  n7 =- 1, and the highest root  a > 0, such tha t  v~-la < 0, is the 

root  0112221, whose height is E n r =  9. When  G = Es, we have w = vl,v2,v3 

and, for s = s(Es)  = 19/58, kn~s - kn, /2  - Ear > 24 - En~. There are only 

five roots a > 0, for which 24 - En~ < 1. They  are (23454321); (23464321); 

(23465321); (23465421) and (23465431). However, one can check tha t  for these 

roots  w - l a  > 0. 

Next we s tudy the intertwining operators Awo(s ). We start  with G : E6. 

For short write A~o(S)f for A~o,~(s)f~, where v is a place in S and f .  E 

ind~(G ) vP( a)$s+l/2" Let w = z(2)z(1), where z(1) = w(431) and z(2) = w0z(1) -1 = 

w(6543245613425). Thus  

Awo(S)f = Az(1)(s) o Az(2)(s)f. 

First,  we claim tha t  Az(2)(s)f is holomorphic at s = s(G) = 1/4. Indeed, as 

before, write z(2) = w(6)w(5) - - ,  w(2)w(5). Factoring Az(2) to GL2-intertwining 

operators,  we see tha t  the poles of Az(2)(s)f are controlled by (2.12), with w -- 

z(2). Since k = 12 and ne = n6 = 1, (2.12) is given by 

(2.13) I ' I  ~(9 - Enr) .  
c t > 0  

z(2)--ic~<O 

The highest roots a > 0 with z ( 2 ) - l a  < 0 are (111221) and (112211). For those, 

E n r =  8. Thus  (2.13) is holomorphic.  By restriction, we have 

Az(2): indGp(G) ~s+1/2 - - - ,  ]~¢~GL4 , ~ 3 s - 1 / 2  
"P(G) . . . .  R(GL4) vR " 

Here R(GL4) is the parabolic subgroup of GL4 whose Levi par t  is GL1 x GL3. 

Also GL4 is embedded in G by deleting the roots  a2, a5 and a6. Finally, the 

simple positive roots in the Levi par t  of R(GL3) are a l  and a3. Indeed, one 
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can check that z(2)al  = a2, z(2)a3 = o~4 and Z(2)O~ 4 ~" 0. T h u s ,  t o  prove our 

assertion, we need to show that 

(2.14) ((12s - 2)-1((12s - 5)-lAzo)(s)f 
lnrlGL4 ~3s--1/2 is holomorphic at s = s(G) = 1/4 for all standard sections f E . . . .  R(CL4) VR " 

Here, of course, we view z(1) = w(431) as an element of GL4 and similarly we 

view Az(1) as intertwining operator of GL(4) (see [PSR2]). To show this, we use 
lnr l  GL4 ,~3s--1/2 Lemma 4.1 in [PSR2]. Let E denote the set of functions f E . . . .  R(GL4) "R ' 

such that the support of f is contained in R(GL4)~R(GL4), where ( 1 )  
1 

w =  1 

1 

Lemma 4.1 in [PSR2] states that in order to study the poles of Az(a)(s)f(g, s) it 
is enough to consider f C E and also we may take g = ~. Since 

( )  z ( 1 ) =  1 1 '  

1 

when viewed as a matrix in GL(4), we have 

(2.15) 

(Az(1)(8)f)(w,s) 

Write, for z ¢ 0, 1 )(1 
1 1 

1 1 
z 1 

1 x 
, 

F a 

:/,I(:, 1 
Fa y X 

z-1 (z-1 

1( 

l 1 ~, s dxdydz 
1 

1 1 , s] dxdydz. 

)(1 z) 
1 ¥ 1 1 " 

z 1 

Plugging this in (2.15), conjugating and changing variables, we obtain 
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Note the multiplicative measure in z. Since f c E the poles of the last inte- 

gral are controlled by the poles of f Iz[12s-5~(z)d*z, where ~ is a Schwartz- 

Bruhat function on F. The poles of the last integral are those of ~(12s - 5). 

Thus ¢(12s - 5)-lAz(1)(s)f is holomorphic which clearly implies that  (2.14) is 

holomorphic. This completes the case of G = E~. The cases G = E7 and G = Es 

are done similarly. When G = E7 we write w0 = z(2)z(1) where z(1) = w(4567) 

and z(2) = w0z(1) -1. In this case g(z(2)) = 23. We have 

Awo(S)f = Az(1)(s) o A~(2)(s)f. 

As before, at s = s(G) = 5/18, A~(2)(s) is holomorphic. This is done by 

decomposing Az(2)(s) into GL(2)-intertwining operators and using (2.12). Also, 

we have 
T , G  zs+l /2  ~ I,~clGL5 5~s - ] -~ .  

Az(2): map(G)  OR(G) . . . .  R(GLs) 

Here R(GL5) is the parabolic subgroup of GL(5) whose Levi part  is GL1 × GL4. 

Also GL5 is embedded in E7 by deleting the roots a l ,  a2 and aa and the simple 

positive roots in R(GL5) are a5, a6 and aT. As in the case of E6 one can easily 

check that  

C(18s - 8)-lAz(1)(s)f 

is holomorphic which clearly implies the statement for this case. Finally, if G = 

Es we set wo = z(2)z(1) where z(1) = w(45678) and z(2) = WoZ(1) -1. Thus 

g(z(2)) = 52. We need to show that  -L~(wo, s)-lAwo,~(s) is holomorphic at 

s = s(G) = 19/58 (see Lemma 2.6). We will show that  

~ (29s  - 27/2)-lA~o,v(s) 

is holomorphic at s = 19/58. As before we omit  the reference to v from the 

notations. Write A~ o(8) = Az(1)(s) o Az(2)(s). Factoring to GL2-intertwining 

operators, we deduce that  Az(2)(s) is holomorphic at s = 19/58. We also have 

T . G  cs+l/2 ~ I~,~GL6 ( ~ R S - ~  
nz(2): lnop(G) °p(G) "UUR(GLs) • 

Here R(GL6) is the parabolic subgroup of GL(6) whose Levi part  is GL1 × GLs. 

Also GL~ is embedded in Es by deleting the roots a l ,  a2 and aa and the simple 

positive roots in the Levi part  of R(GL6) are a5, a6, a7 and as.  Finally, arguing 

as before, we obtain that  

~(29s - 27/2)-lAz(1)(s) 
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is holomorphic at s = 19/58. This completes the proof of Lemmas 2.4, 2.5 and 

2.6. | 

Remark 2.7: case ofisogeneous groups. It is clear that the content of this section 

applies, with self-evident notation, to simple groups isogeneous to Din, E6, ET,  

Es. One constructs the analogous Eisenstein series, and Theorem 2.3 and the 

formulae in its proof remain valid, as the proof involves only the Dynkin diagrams. 

Moreover, we have the following simple situation. Denote, for this remark, by 

G ~ one of the simply connected groups above and by G a connected simple 

group of the same type; then we have an isogeny, defined over k, i: G ~ ~ G. 

Let T denote the maximal toms of G. Then G(k,) = T(k~)Im(i)(k~), for all 

u. Denote by ps~ and P two corresponding parabolic subgroups in G s~ and G 

respectively (i.e. they correspond to the same subset of simple roots). Clearly, 

for p 6 PS~(k~), 6p~(p) : 6p(i(p)). Consider the map i*: IndGp, " 68+1/2 
G i  c ~8+1/2  Ind ~ , p=  , induced by i. It is an isomorphism, which takes a right translation 

by g to a right translation by i(g). Let ~8 be a section for IndCp, " ~p+½ and let 

L = i*(~8). For Re(s) >> 0, we have 

(2.16) 

Epsc (g, L )  = ~ L(Tk)  = ~ ~8(i(7)i(g)) 
"yEP~. \ G  k ~ ~ \ k 

= ~ ~o~(7i(g)) = Ep(i(g) ,~) .  
~EPk  \ G k  

Here we used Bruhat decomposition, which is "the same" for either G or G 8c, 

and hence i (P~C\G~ c) and Pk\Gk have the same set of representatives. | 

3. The residue representation 

Denote by 0~ the space of automorphic forms on GA obtained by 

Ress=s(a) E~(c)(g, f ,  s) as f varies in I(s). O' v affords an automorphic repre- 

sentation of GA by right translations. We denote this representation by 0~ as 

well. From (2.3), (2.5), (2.8) and (2.11) we deduce 

THEOREM 3.1: We have 

c O oic ), 
'U ! w 

G # D ~ ,  

G = Dm. 
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Here L°(G) = [L(G), L(G)] and 0a v is the representation of L°(G)A by right 

translations on the space of constant terms along U of 0 5, i.e. on 

{g~--~Ju~\uA~(ug)du:gEL°(G)A}" 

0))~_ 1 is the space of automorphic forms ~(g~) on D~_I(A) where ~o is 

the outer automorphism which flips ~1 and ~2. Note that in (2.3) the second 

term involves Pa(D~-I). Since Pa(Dm-1) = P(Dm-1) ~, it is clear that the 

second term in (2.3) lies in (0~)m_l) ~. Note also that in (2.5), (2.6) and (2.11) 

A~o (s)flLo(a) A is constant at s = s(G). The action of "general" central elements 

of L(G)• on ~ ® O~o(a) is read from (2.3), (2.4), (2.7), (2.10). 

PROPOSITION 3 . 2 : 0  5 Consists of square integrable automorphic forms, i.e. 

0' a C L2(G(F)\G(A)). 

Proof: We use the square integrability criterion of [J]. See also [KRS, p. 520]. 

Since the elements ¢ E 0~ are concentrated along the Borel subgroup B(G), we 

have to show that  the automorphic exponents of ¢ along B(G) have real part 

which is a linear combination of the simple roots with negative coefficients. We 

check this case by case. 

(1): G = Din, m _> 4. A successive application of (2.3) shows that the automor- 

phic exponents along B(G) correspond to the following characters of the adele 

points of the standard torus: 

Xk: h(al, a2,..., a,~) ~ 5B1/2(h(al,..., am))[ak]k-2[ak+l] 3-k 

for 4 < k < m. (We define am+l = 1. Recall that  for automorphic exponents 

it suffices to take a~ E A* with coordinate 1 at all finite places, and positive 

lying in the diagonal at archimedean places.) In additive form the character Xk 
is expressed as 

1 ~ (j__~3 ~ ) #k = --2 E a+ ( m -  j + l)~j + ( m -  2) 13j + (~1+~2)  • 
~E¢+(G) j=k+l 

l ( m  + i - 2 ) ( m  - i + 1) The coefficient of fli, i > k, in pk is (m - i + 1) - 

which equals - ( m  - i + 1)(m + i) < 0. If 3 < i < k, the coefficient is (m - 2) 
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1 < - ~ ( m + i  - 2)(m - i +  1) < 0. I f / =  1,2, the coefficients is m-22 21 (rn--1)rn2 

0. Thus t~k is a linear combination of all roots i l l , . . . , /3m, with all coefficients 

negative. 

(2): G = E6. The automorphic exponents of 0~ can be read off (2.4). The 

exponents which come from the second term of (2.4) correspond to the following 

character (using the previous case with m = 5): 

h =h (a4/3, a, ah/3, a2,a4/3,a2/3) h(1,t2,...,t6) 
(3.2) 

,~-1/2 (h(a4/3, a, ah/3, a2,a4/3 a2/3))[a]2. X"(h(1 , t2 , . . , t 6 ) )  
~-+ "Q(E6) 

X" varies over the characters, which are trivial on h (a 4/3, a, . . . ,  a 2/a) and on 

h(1, t2, t6) correspond to the automorphic exponents of 0 ~ where D5 is the 
• • " ,  D s '  

semisimple part of L(E6), the Levi subgroup of Q(E6) (i.e. D5 is based on the 

roots a 2 , . . . , a 6 ) .  Thus X" corresponds to a linear combination of a 2 , . . . , a 6  

with negative coefficients. Recall that in (3.2) a, t2,.. . , t6 are taken to have 

positive coordinates at the archimedean places and 1 at all other places. The 

element h (a 4/3, a , . . . ,  a 2/3) acts trivially by conjugation on x,~ (r) for 2 < i < 

6 and takes Xal(r) to x~(ar).  Since 6Q(E6)(h(tl,..., t6)) = ltl112, it is clear 

that the character (3.2) has the form X~)/", where, for h in (3.2), :~'(h) = Ja1-6 
-3IS 

and xH(h) = X"(h(1,t2,...,t6)). We have x'(h) = tel -6 = 5Q(E6)(h). Thus 

X ~ corresponds to a linear combination with negative coefficients of the roots 

which correspond to U(E6), the unipotent radical of Q(E6). Next, consider the 

automorphic exponents which come from the third term in (2.4). These have 
-1 /2  4 ~ - i / 4  

the form X'X", where, for h in (3.2), x'(h) = 5Q(E6) (h ) Ia]  -= la1-4  = VQ(Es ), 

-1/2 . . ,  t6)), where B(Dh) is the Borel subgroup of D5 c and X"(h) = ~B(Dh)(h(1, t2,. 
L(E6). Thus XIX" corresponds to a linear combination of the simple roots with 

negative coefficients. 

(3): G = ET, Es. The proof here is as in the case of E6. The exponents in 

each case are read off the last two terms of (2.7) and (2.10) respectively. In both 

cases, write an element of the torus (with positive coordinates at the archimedean 

places, and 1 at all finite places) as 

h = hlh" 

where h' -= ~ h(a, a 3/2, a 2, a 3, a 5/2, a 2, a3/2), 

[ h ( a  2, a 3, a 4, a 6, a 5, a 4, a 3, a2) ,  
a = E 7 ,  

G = Es .  
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and 
h " = [ h ( t ~  . . . .  ,t6,1), G = E T ,  

[ h(tl, ..,t% l), G = E s .  

Note that h' acts trivially (by conjugation) on L(G), the Levi part of Q(G), 

and it takes x~(r )  to x~(ar),  in case G = E7, and x~8(r ) to x~8(ar), in case 

G = Es. The automorphic exponents of 0 5 (provided by (2.7), (2.10)) along B 

correspond to characters of the form 

k = X'X" 

where x'(h") - 1 and ~"(h') = 1. The last term in (2.7) (resp. in (2.10)) provides 

exponents which correspond to 

{ ,~-1/2 /h ' /  : ,~-5/9 [h'~ 
(3.3) ~ ' (h ' )  = vQ(E~)~'° 'let6 ~ q ( ~ ) ~ , o .  a = E~, 

~-1/2 ih,~]alZO 5 ~8 (h'~ G = Es. -Q(Es)\  '° ] : Q(Es)t 1' 

(Note that 5Q(G)(h") =- 1.) 

(3.4) ~"(h") = 5 -1/2 th"~ B(E,_I)[ ]' i = 7,8 

where B(Ei_I) is the Borel subgroup of El-1 realized as the semisimple part of 

L(G) = L(E~), the Levi part of Q(G). It is clear, from (3.3), (3.4), that X'X" 

corresponds to a linear combination of the simple roots with negative coefficients. 

(Every simple root has a negative coefficient.) The one before last term in (2.7) 

(resp. in (2.10)) provides exponents which correspond to 

f --I/2 ! 3 = $--7/18(h] ~ 5Q(ET)(h )[al "Q(ET)~'" J, G -= E7 
x'(h')= [ -1/2 , 6 ~-23/5s 

5Q(E~)(h )[a[ "Q(Es) ' G = Es  

and X" (h") corresponds to an exponent of 0E~_ 1, i = 7, 8 along B (Ei-  z), so that  it 

is a linear combination with negative coefficients of (all) simple roots a l , . . . ,  a~-i 

(i = 7, 8). X' as a character of h corresponds to a linear combination with negative 

coefficients of the roots which occur in U(G). | 

Since 0 5 is square integrable, we get 

COROLLARY 3 . 3 : 0  5 is a direct sum of irreducible (automorphic) representations. 
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Remark 3.4: As in Remark 2.7, we have the same results for isogeneous groups. 

In the notation of Remark 2.7, we get the square integrable representations 0' V sc 

and 0~ on G~ ~ and GA respectively. These representations are the same in the 

sense that 

Res~=~(G) Ep~ (g, fs) : Res~=~(G) Ep(i(g), ~s). 

Note also that Ep~ and hence 0~o have a trivial central character and hence ' 8G~ 
is a representation of i(GA), and we have the following equality of automorphic 

representation of i (GA): 

t~' '1 Gsc = OG i(GA)" II 

4. Def in i t ion  of  t he  ( au tomorph ic )  t h e t a  r e p r e s e n t a t i o n  

Let F be a local nonarchimedean field. Let G be one of the groups E6, E7, Es. 

(We will treat Dm separately.) In [KS] the minimal representation OG(F) = 0C 
(simply laced, simply connected group in general) is defined. It is first constructed 

as an irreducible unitary representation of the parabolic subgroup Pueis(G) -- 

E(G).H(G), and then it is proven to extend to a representation t~G of G. Let ¢ be 

a nontrivial character of F, and let a¢ be the Stone-von Neumann representation 

of H(G), with central character ¢ (we identify the center of H(G) as t ~-~ xz(t) = 

exp(tX~), t E F). a¢ extends to Pn°eis(G) ---- E°(G)H(G), where E°(G) is the 

semisimple part of E(G). Then we have 

(4.1) 0"G [ pO = "~APH~i~ 
, ~**,~pO i ' Cr,p. 

0v denotes the unitary completion of the smooth representation 0G. The r.h.s. 

of (4.1) is an induction in the L2-sense. From [KS], it follows that  

5-~(c)+1 0c C Ind~H,~" PH°I~ 

where 

(4.2) 

Note that  

(4.3) 

7/22, G = E6, 
z(G) = 11/34, G = E T ,  

19/58, G = E s .  

{ It~l n,  
5p~,~,(h(tl,...,t~)) = Itl117, 

Its129, 

v = E ~ ( i  = 6 ) ,  

G = E T ( i  = 7), 
G = E s ( i  = 8). 
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The representation I n d ~  S ~-z(G)+½ has a unique irreducible subrepresentation. PHeis 
This is shown in [S]. Thus Oa is the unique irreducible subrepresentation of 

indap~ei~ 5-z(a)+½ and by duality, since Oa is self-dual, PHeis 

PROPOSITION 4.1: 0C is the unique irreducible quotient ofIndGpH°~s 5 z(G)+½ PHeis " 

Now let us show 

PROPOSITION 4.2: PG is the unramified subquotient of IndGp(c)6~ (c)+½. (For 
the definition of s(G), see Section 2.) 

Proof: In case G -= Es, P - PHeis and s(Es) -- z(E8), and so there is nothing 

to prove. Assume C = E6, E7. 

Let 

w(2456), G -- E6, 
(4.4) w- -  w(134567), G = ET. 

Note that  the positive roots a, such that w(a) < 0, are roots in V(G), the 

unipotent (abelian) radical of P(G). More precisely, 

(4.5) 
¢w = {(2 • ¢+ I w((2) < 0} 

{(26, (26 + (25, (26 + (25 + (24, (26 + (15 + (24 + (22}, G -- E6, 
: ((27, (27 -~- 0~6, 0~7 -~- (26 -}- (25, (27 -~- 0/6 -}- (25 -}- (24, 

(27 ~- (26 -}- (25 -}- (24 -4- (23, (27 -}- (26 -}- (25 ~- (24 -~- (23 -}- (21}, G = ET. 

Consider, first in the convergence domain, the intertwining operator Mw(z) on 

IndpG.e,o ~Zp:~s 

(4.6) M~(z)fz(g) = //(wII~e~x~(r~)g)l-i~e,~dr~ 

.~z + ½ 
for a holomorphic section ]~ in IndGpH.~..p..~ . Clearly 

(4.7) Mw(z)A(ug) = M~(z)A(g), u • V(V). 

Now restrict g to be in M(G). Let M°(G) be the semisimple part of M(G). If 

G = E6, then M°(G) = D5, which is based on the simple roots { a l , . . . ,  a5}. 

If G = ET, then M°(G) = E6, which is based on the simple roots { a l , . . . , a 6 } .  

Consider the parabolic subgroup PHeis(M°(G)) of M°(G). It is easy to check 

that w takes the simple roots % which belong to the Levi part of PH~i~(M°(G)), 
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to simple roots which belong to the Levi part  of PHeis(G), and so for such simple 

roots 7, we have 

5g.ei.(G)(x+.~(t)) -- 1. 

Also, the radical of P°eis(M°(G)) is taken by w to the radical of PHeis(G). Thus 

T, AM°(G) $z' +½ 
Mw(z)fzlMO(a) E ... .  p~,i,(MO(G)) .pO is(MO(G)). 

To compute z', we check the effect of left translation in g in (4.6) by h3(t) in case 

G = E6 and by h2(t) in case G = ET. We have, in case G = E6, 

= ItJ-: I y(wh3(t)H"e¢'~x"(r")g)IIdr" M~(z)fz(h3(t)g) 

= It1-2 / f(h2(t)h4(t)hs(t)WIIc~e~x~(r~)g)Ildr~ 

= Itr-26p+:(E~)(h2(t))Mm(z)f~(g) 

Itl½ +I1~ ½ + ~  t : --_ 6PH,i.(Mo(C))(h3 ( ))" 

Thus 

(4.8) 

Similarly, in case G = ET, 

11 
Z ! -~- y Z .  

17 
(4.9) z ' =  ~-~z. 

Now, when we formally substitute z = z(G) in (4.8) and (4.9) we get 

and hence 

(4.10) 

z I = 1/2 

T 1MO(G) ,~1/2+1/2 
Mw(z(G) )flMO(G ) E lnClp~,,,(MO(G)) vp~s(MO(G)) 

for f in Ind~H,,,(G)~p(ai) ' . To justify this step, we show that  Mw(z)fz is holomor- 

phic and not identically zero for z = z(G). We have the factorization 

Mw(z) = { M~6(z6)M~(zs)Mm(z4)M~2(z2)' G = E6 
M~7(z7)Mw~(z6)...M, o3(z3)M,~l(zl), G --- E7 
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for appropriate linear functions zi of z. We view this factorization for operators 

defined on IndGs(a)6½pJo~o(a). Examining the analytic properties of each factor 

/1//~ (z~) is a "GL2-calculation'. Indeed, we just have to consider 

f f(w,x~(r))dr, 
F 

for a simple root a, and f in an appropriate induced representation from B(G). 
This is the Gindikin-Karplevich method. Thus, the poles of M~ (z) are contained 

in those of 

4 ~ ( l l z  + j + 1) a = E6, 
1 2  j=I-[ 1 2 ,  

l-I 
~>0 I] ¢ ( 1 7 z + j + l ) ,  G=ET. 

w-i(c~) <0 j=2 

11 • Clearly, z = ~ in case G = E6 and z = 5~ m case G = E7 are points of 

holomorphicity. Moreover, when Mw(z) is applied to the normalized K-fixed 
InAG .~z+l/2 vector in "P~,~(c) "PH~,~ ' evaluated at. 1, we get 

1 

i a> i) r I  + + + , 
c, >O 

w-~(c~)<O 

which is nonzero for z = z(G). This justifies (4.10). Since 

i .M°(G) 51/2+1/2 
nOpHe,~(M°(G)) PHeis(MO(G)) 

has 1MO(G ) as a quotient, then composing Mw(z(G)) with a map 

Tt: T .M°(G) cl/2q.-1/2 
lnaPRe~s(go(G)) OPne,dMO(G)) ~ 1MO(G), 

and using (4.7), we obtain an M°(G)-map 

Jr(a) (IndGp,~, 6p(~) +1/2) ~ XM0(a). (4.11) T: 

Jv(a) denotes the Jacquet functor. In order to see how T transforms the action 

of M(G), it remains to check this on the following central elements of M(G) (see 

proof of Theorem 2.3): 

h(a) = { h(a2' a3, a4, a6, a5' a4)' G = E6, 
h(J,  a 3, a 4, a 6, a 5, a 4, a3), G = E7. 
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Note that h(a) commutes with (the roots in) M°(G) and it acts on x~6(r ) by 

x~6(a3r) in case G = E6. It acts on x~T(r ) by x(~7(a-lr) in case G = ET. It 

is easy to check that the action of h(a) through T is (in both cases) by la112 = 
½-s(a) ~p(a) (h(a)). This and (4.11) imply by Frobenius reciprocity that there is a 

nontrivial G-equivariant map 

7: IndapHo~ 6~(a)+1/2 ~ ind~(c ) ~-s(a)+l/~ Pne,s ~'P(G) " 

Now IndapH,,s 6pl G)+1/2 is generated by f0 _ the unramified element as a G- 
H e m  

module (since it has a unique quotient which is unramified, i.e. 0G) - -  and hence 

the image of r is generated as a G-module by T(f°). G • 7(f °) has, of course, 

a unique irreducible quotient which is unramified, and since the quotient is also 

one  for  
2 i z ( G ) + l / 2  

Indapn,,s(G) "Pnei~ (G) ' 

d a ~-s(a)+l/2 it must be 0a. Thus Oa is the unramified constituent of In P(G) ~P(a) , and 

similarly, by duality, Oa is the unramified constituent of Indap(a) ~s(a)+l/2 ~'P(G) " I 

~¢ I . A  G . ~ s ( G ) + l / 2  (i.e. Remark 1: It is certain that 0a is the unique quotient . . . . . .  P(a) "p(a) 
G.  T(f  °) is irreducible), but for our needs Proposition 4.2 will suffice. 

Remark 2: Let G denote a group of type E6, ET, E8,  and again, denote by 

G s~ the corresponding simply connected group. (In case Es, G = G sc, and in 

cases E6, ET, G can be either simply connected or of adjoint type.) Denote So = 

s(G~C). Consider as in Remark 2.7 the representations T = Indap (~so+½ and ~-~ = 

Ind~:: ~o+½ (now over F)  and the natural isonmrphism i*: ~- --* r ~¢. Let fo E 7 

be the unramified vector, and let V = T(G).f0 (the G-module generated by )Co). V 

has a unique unramified quotient W\V.  i* induces a vector space isomorphism 

W \ V  ~- i*(W)\i*(V). We have i*(V) = i*(r(G)fo) = T~(G~)i*(fo). This 

is due to the fact that f0 and i*(fo) are the unramified vectors of v and T ~¢ 

respectively, and that G = i(B~)K, K being the maximal compact subgroup 

of G. Similarly, i*(W) is G~-invariant. Let us show that W \ V  is irreducible 

over i(G~). Indeed i(G ~c) is normal in G and i(G~)\G is finite and abelian. 

Decompose over i(G~¢), W \ V  = ( ~ ( ~ ) ( W \ V o )  = ( ~  W\'r(w)Vo, where 

varies over a subset of the set of representatives of i(G~C)\G, and W\Vo is an 

irreducible subspace of W \ V  over i(G~). This induces a decomposition (as 

G~¢-modules) i*(W)\i*(V) = ~ i*(W)\i*(T(w)Vo). Since i*(W)\i*(V) has a 
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unique unramified quotient, f0 + W must project onto one summand only in 

@~(W\r(~)Vo), say it is W\Vo. But now 

w \ v  = (fo + w )  = w \ , - ( a ) ,  fo = w\ (/(asc))fo = W\Vo. 

Let us denote by 0G(F) the unramified subquotient of T. We will abbreviate 

and denote 0c. We have shown that  0G is irreducible over i(G so) and that  

Res/(G,c) 0G -- 0G~o. In particular, it follows that  0c is a minimal representation 

of G, since the character distribution of either 0c or 0c8c on Lie(G) = Lie(G so) 

is exactly the same. See IS, section 2]. 

Let us consider the case Din. Here, let us use the more familiar notation Spin 

to denote the simply connected group. Over the local field F, we have the exact 

sequences 

1 

1 
1 . Z2 . S p i n ( F )  j , SO;m(F ) = [O2.~,O2m] . 1 

SO2m(F)  

l 
F*/(F*)  2 

Consider the Howe lift (local theta correspondence) of the trivial representation 

of SL2(F) to SO2~(F),  i.e. the lift via the Weil representation for the dual pair 

SL2 x O2m inside Sp2 m (rank 2m). The result of the lift does not depend on 

an additive character of F. Exactly as in [KR, Section 3], this representation 
. . S O 2 m  ( f )  is irreducible, unramified and embeds into lnOp(so2m ) 6p s°+½. It  is a unique 

irreducible subrepresentation (so = s(D,~)). It  can be realized as the space of 

functions on SO2m(F) 

(4.12) h ~-* w¢(1, h)¢(0, 0) 

where ¢ is a Schwartz function on X • X, and X is a maximal isotropic subspace 

of the 2m-dimensional quadratic space on which SO2m(F) acts and preserves 

the quadratic space on which SO2m(F) acts and preserves the quadratic form; 
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we(g, h) is the Well representation of SP2m(F ) restricted to SL2(F) x SO2m(F), 

and ¢ is a nontrivial character of F.  Let 9s02.~ be the unramified quotient 
l_.~SO2m (F) ~,80 + ½ 

o f  . l lO.P(SO2m ) Vp . It is also realized as the space of functions (4.12). By 

the above diagram 0so2~ defines unramified representations of Spin(F) and 
I SO2m(F ). Exactly as in Remark 2, these representations are irreducible (one 

over Spin(F) and one over SO~m(F)) and form the unique unramified quotients 
T , S p i n ( f )  l_.~SO~m ( f )  0Spin and 9 s o ~  of l nep (Sp in  ) ~p0+½ and .~Up(so~m ) ~p0+½ respectively. We re- 

laxed the notation a little bit. We also have Resvoj(Spin(F))0SO2m = 0Spin and 

Res . ( so~(F)  0SO~ ---- 0 s o ~ .  By IS, Theorem 2.2] 0Spin,0SO~ and 0so2.~ are 

minimal representations of Spin(F), SO~m(F ) and SO2m(F), respectively. It 

follows from the realization (4.12) that 

Ira-1 ) 
( 4 . 1 3 )  ~ 0 1 9s02.~ ==- 9s02m, for w = 1 0 " 

Im-1 

(Indeed w¢(1, h) in (4.12) is meaningful for h E 02m(F).) Conjugation by 

induces on Spin, the outer automorphism which flips the roots 3t and 32. Still 

denoting it by w, we get that 0Spin2m - 0Spin2m.  

We are ready to construct an automorphic realization for OG. Let F be a 

number field and G of type Din, E6, ET, Es (simply connected or not). Consider, 

for each place v of F,  the cyclic Gv-module 0~ generated by the unramified vector 

fo in . . . .  I~AG~p(G~)"P(G~)'~s(G)+½" We have a map from TG = ®0~ to square integrable 

automorphic forms on GA, defined by the residue at s = s(G) of the Eisenstein 
GA (see Section 3). Thus we consider series, which corresponds to Indp(GA ) 5P(GA) 

only sections which are generated by the KA-fixed vector fo = ®fo. Denote by 

9c the space of automorphic forms obtained for such sections by the residues at 

s = s ( G ) .  

THEOREM 4.3: 0G iS irredudble and, at all/~nite places v, the local component 

of Or is Oct. 

Proof: 9G is an invariant subspace of 9~ and hence, by Corollary 3.2 and Remark 

3.4, 9G ---- ~ r(i), a direct sum of irreducible automorphic representations 7r (i). 

Denote by E the surjection from TG to 0G. E ( f  °) has a nonzero projection on 

each summand ~(i) (and so ~(i) is unramified at all places). Fix a p]~ce v0 and 

consider a decomposable vector in 7G which at the place Vo is arbitrary ~o (in the 
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space of 0~o ) and fo and the remaining places. Denote such a vector by j(~.0). 

Consider the projection of E(j(~,o) ) on ~(i). This defines a nontrivial map from 

0~0 to u(i) (since E(j(f°o)) = E( f  °) has a nontrivial projection on 7r(i)). Clearly 

E(j(~,o) ) lies in the subspace of 1-[~¢~o K.-fixed vectors of ~.(i) ~ Qr(i), and this 

f , is isomorphic, as a G.o-module, to ~(io). Thus 7~(i0 ) is an irreducible quotient o 0~0 

and hence, by Proposition 4.2, the following Remark 2 and the last discussion on 

case Din, ~(io) ~- 0a.0 whenever u0 is finite. Similarly, when we project E(j(~,o) ) 
_(i~) ~r(~ 2) (which is isomorphic onto 7r (i~) (~Tr (i2), we get that, for uo < ec, ~o G 

to OG,o ® Oa~o ) is a quotient of 0~0. This is impossible unless Oa is irreducible. 

| 

Definition: We call Oa the automorphic theta representation of GA. 

Remark: Although we did not prove that 0 5 = {Ress=s(e)E*p(G)(g,f,s)} is 

irreducible, it is clear, as in the last proof, that Ov is the unique everywhere 

unramified irreducible summand of 0~. It follows that Oc~ is a quotient of 

Indae[a ) 5 ~(a)+½ p~ at all places u. 

From (2.3), (2.5), (2.8) and (2.11), it is easy to deduce, as in Theorem 3.1. 

THEOREM 4.4: We have 

O~ILo(G)A = ~ m OLO(G), 

0 ILo( )A = , 

G of type E6, ET, E8, 

G of type Dm. 

The action of the center of L(G)A on ~ • 9LO(C) iS read from (2.4), (2.4), (2.7), 

(2.10). 

5. Fourier  coeff ic ients  of  t h e  t h e t a  r e p r e s e n t a t i o n  

Let F be a number field and G of type Dm, E6, ET, E8 (simply connected or not). 

In this section, we consider the Fourier expansion of Ov along U(F)\U(A). Recall 

that U is abelian except in case Es, where U is a Heisenberg group (see (1.2)). 

The characters of U(F)\U(A) have the following form. Let ¢ be a nontrivial 

character of F\A,  and let Y E Lie (U)F. Put 

Cy(expZ) = ¢(B(Z, Y)), Z E Lie (U)A. 

B is the Killing form. In case Es, we have to assume that  Y has zero projection 

on the root space which corresponds to the negative of the highest root. (In this 
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case, a character of U(A) must be trivial on the center of U(A).) Denote by O~ Y 

the space of functions on G(A) 

(5.1) fCV (g) = f ¢~l(u)f(ug)du, 
U(F)\U(A) 

as f varies in Oa. 
Assume that Ocav is nontrivial. Consider the linear functional 

ey(f) = f¢Y (1), 

and choose a finite place v. By restricting ey to 0c~ (as in the proof of Theorem 

4.3) ey defines a linear functional gy,, on the space Voa~ of 0a~, such that  

(5.2) = e U ( F . ) .  

Let us recall, at this point, the notion of a degenerate Whittaker model. Recall 

(from [MW]) that, for a local (nonarchimedean) field k, a degenerate Whittaker 

model is defined starting with a nilpotent element Y E gk and a one-parameter 

subgroup ~: k* ~ G(k), such that 

(5.3) Ad~(s)Y = s-2y, s E k*. 

Decompose 

where 

gi(k) = {X e g(k) ] Ad~(s)(X) = sex}. 

Let N+(k) (resp. N'(k)) be the unipotent subgroup of G(k), whose Lie algebra 

is ~ i>1  gi(k) (resp. ~[~i>2 gi(k)). Consider N"(k), the subgroup of g+(k) gen- 

erated by N~(k) and the stabilizer, in N+(k), of Y. Fix ¢, a nontrivial character 

of k. Then 

Cy(expZ) = ¢(B(Z,  Y)) 

defines a character of N"(k). 
A smooth irreducible representation r of G(k) is said to have a degener- 

ate Whittaker model relative to (Y, ~), if its Jacquet module with respect to 

(N"(k), Cy) is nontrivial. The main result in [MW] is that  the set of maximal 
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elements of the set of nilpotent orbits which occur in the germ expansion of the 

character of ~r is identical with the set of maximal elements of the set of nilpotent 

orbits which contain an element Y, for which there is ~ as in (5.3), so that ~r has 

a degenerate Whittaker model relative to (]I, 9~). 

LEMMA 5.1: Let k be any field. For every a E A(G), there is a toral one- 

parameter subgroup ~,~, such that 

(5.4) Ad(~(a))(X~) = a~',~aX~ 

for ~, E A(G) and a E k*. Here 

1, G of type Es, 
n o =  2, G of type ET, Dm, 

3, G of type E6. 

Proof: Write 

~ ( a ) =  ha,(a . ), a E  , r~ ,~ ,EZ.  
c~'6A 

Then 

Ad 

We then want 

r~,~, ((~', "y) = 8~,~nc, 
~ ' 6 A  

for all ~,eA(G), with r~,~, integers. For this, we have to examine the inverse to the 

Cartan matrix of G, and check that the common denominator of its coordinates 

is nG. | 

We denote 
~ ( a )  = { ~(a2) '  G of type E8, 

~ ( a ) ,  G of type E7, E6, Dm. 

Then by (5.4), we have 

(5.5) Ad ~ ( a ) X ~  = a~"'~ma X.~, 

for a E k*, a, ~, 6 A(G) and 

S 2, G of type Ev, E8, Din, 
mG 

1 3, G of type E6. 

We introduce ~ in order to conform with [MW] (when G is not of type E6). 

Our first main result in this section says that  Oa has essentially only one 

nontrivial Fourier coefficient along U. 
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THEOREM 5.2: The space 0~ ~" is nontrivial i f  and only if Y = 0 or 

Y e Ad (L(GF))  (X-aQ) .  (See (1.2) for definitions.) 

Proof'. We prove this theorem by local reasoning, i.e. using the fact that the 

local components of 9G are the local theta representations, and, as a mat ter  of 

fact, we only use one finite place. (Compare with our work [GRS], where we 

made a similar use of the smallness of the representation at one archimedean 

place.) 

Assume that  0 ¢Y is nontrivial, and fix a finite place v. The functional gy 

gives rise to the functional ty,~ on Vec~, so that (5.2) is satisfied. Let us show 

that  ~y,~ defines a degenerate Whittaker model of 0G.. For this, consider the 

one-parameter subgroup 

(5.6) ~ = ~ Q .  

By (5.5), it follows that 

(5.7) 
{ g~,,-mc ~ g~,o @ g~,mo, 

g~ = {~,,,-2mo @ ~,-,,~G @ go @ g~,,mo G g~,2,,~a, 

and in case G # Es 

G of type E6,  E7 ,  D,,  
G of type Es 

9~,-mG = Lie(ff)F~, g~,0 = Lie (L (G) )F ,  g~,,~a = Lie(U)F~, 

while in case G = Es, 

g~,,-2m, @ g~,,-mo = Lie(U)F~, 

(5.8) g~,,o = Lie(L(G))F , 

0v,ma ~ gv,2ma = Lie(U)F . 

Here, we abbreviated gi(F~) to g~,i. Note that for G = Es, g~,+2mo -- fI,,:e4 = 

F~ • X±~, where/3 is the highest root. It follows from (5.7) and (5.8) that for 

Y E Lie(U)F~, 

(5.9) N + = N ~  = NIle, = U(F~). 

Thus, a degenerate Whittaker model with respect to (Y, ~), for Y E Lie(U) and 

as in (5.6), is given by linear functionals which satisfy (5.2). The result of 

[MW] and the smallness of 9a~ imply that if gy,~ is nontrivial, then Y lies in the 
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closure of Ad(G,) (Xz) .  Since Ad(G~)(X~) is the minimal (nontrivial) nilpotent 

orbit in g. ,  then Y = 0 or Y E Ad(G,)(Xz) .  (Recall that the smallness of 

Oa, means that in the germ expansion of Oa~ only one nontrivial nilpotent orbit 

occurs, the coadjoint orbit of highest weight.) We remark here that in case Ea, 

~o(a) satisfies (5.3) with a -a instead of a -2. However, since we have (5.8) and 

(5.9), the definition of a degenerate Whittaker model relative to (I 7, ~o) can be 

repeated, and it is easy to check that the result of [MW] follows exactly in the 

same way for this case as well, and we reach the same conclusion, namely, if @,, 

in (5.2) is nontrivial, then Y = 0 or Y E Ad(G,)(X~).  

By Proposition 5.3, proved below, it follows that 

{ Lie(U)F~, G ¢ Es, 
(5.10) Ad(G~)(X/3)A (~ g_&, G=Es =Ad(L(G)F~)(X_&Q). 

a = ~  n i a ,  , n s = l  

Thus, i f Y  ¢ 0, then Y e Ad(L(G)r,)(X_~Q) = Ad(L°(G)F~)(X_,~Q) (L°(G) 

= [L(G),L(G)]). Let us show that Y e Ad(L°(G)F)(X-~Q). Let E be the 

parabolic subgroup of L°(G), which preserves g_~Q. (The Levi part of E is based 

on A(G) \{a  0, aa} ,  where a b is the simple root adjacent to aQ in the Dynkin 

diagram of G.) E acts on X_,~ e by multiplication by a rational character. Let 

E 1 be the kernel of this character. Thus, the elements of Ad ( L ° ( G , ) ) ( X _ % )  

are parameterized by L°(G~,)/E~ and, by the Bruhat decomposition, they are of 

the form 

(5.11) Ad (xwh~b ( t - l ) ) (X_~Q) = t Ad(xw)(X_~Q), 

where w is an element of the Weyl group of L ° (G), and x is of the form YI x~ (r~), 

r~ E F~, and a ranges over the set Iw of positive roots for L°(G) such that  

u,-l(a) is a root for the opposite radical of E 1. Clearly, w can be taken in 

L°(G)F. Denote 7 = w(c~). This is a root in U. Let Sw be the set of simple 

roots in I~. We have 

(5.12) t A d (  l - [  x&(r~))(X_v)=tX_~+t E r&X-'Y+& +tEc~X-'~+s" 
&El,. aES~o 

In the third term of (5.12), p runs over certain roots of height larger than one. 

Clearly. there are no cancellations in (5.12). Since Y is of the form (5.12), we get 

that t, cs and r~, for a C S~, are rational (i.e. lie in F). Consider now # in I~, 
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of height two. The coefficient c ,  of X_~+~ is either r~ or r~ + r~r~,; ~, ~' E Sw, 
such that # = ~ + ~ .  Since c~ E F and since r~ E F,  for all c~ E Sw, we get that 

r~ E F.  We proceed by induction on the height of # E I~. Assume that r ,  E F 

for all # in Iw of height less than i. Then, for # E Iw of height i, c ,  has the form 

r .  + ~ r t, where r' are products of rp,, with #~ E I~ of height less than i. Since 

c u E F, we conclude, by induction, that r ,  E F. Thus Y E A d  (L°(G)F)(X-c~Q), 
as we wanted. 

We proved that, for f E/70, G ¢ Es, 

(5.13) f ig )  -- fU(g) q_ E f~x_,~Q (3'g). 
"/EE1F \L°(G)F 

Note that it is enough to fix '~,, due to the presence in (5.11) of t E F*. (5.13) 

is the Fourier expansion of f ig )  along U. This expansion depends only on the 

constant term and on one nontrivial Fourier coefficient, namely that with respect 

to '~'X_oq. Thus, if Y E Ad (L(G)I~)(X_~Q) and 0~" = 0, then f(g) = fU(g), 
for all g E GA, and all f E 0G- This is impossible, since then f(q) = f(qu),  for all 

q E QA and u E UA. Since Q~\QA is dense in GF\GA, we get that f(g) = f(gu), 
for all g E GA and u E UA. This cannot happen (for example, by the Howe- 

Moore Theorem [HM]). Of course, 0~ is nonzero (by Cor. 2.7). Assume G = Es. 

In this case, (5.13) is replaced by 

fZ(g) = fU(g) _1_ ~ f~/'×-~Q (~/g), 
~eE1F \LO(G)F 

where Z is the center of U (Lie(Z) = 9~). If Y E Ad(L(G)F)(X-~Q) and 

0~ ~" = 0, then fZ(g) = fu(g) for all g E GA and f E 0G. Let c~ be the root of 

height one less than the height of/3. ~ is a root in U. Denote by N~ the root 

subgroup which corresponds to c~. Consider the Fourier expansion of f along the 

abelian group N~Z. The group G~ 8 -- SL(2), which corresponds to c~Q = ms, 

acts by conjugation on the two-dimensional unipotent group N~ Z according to its 

natural action on F 2 (simply by identifying x~(t)xn(s ) with (t, s)). Accordingly, 

f(g) = ~ fO,W(.,/g)-t- fN'~Z(9). 

Here, "y runs over N~ 8 \ G ~  and 

fO,~(g)= i f(xo(t)x~(s)g)¢-l(t)dtds= i fZ(x~(t)g)~b-l(t)dt 
F2kA 2 FkA 

i fu(xc~(t)O,),l/j-l(t)dt = i f U ( g ) ~ j - l ( t ) d t  : O. 

F\A FkA 
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Thus, f = fN~Z, and hence f = 0. This completes the proof of Theorem 5.2. 
| 

Consider the end vertex in the Dynkin diagram, which corresponds to aQ. Let 

us redenote aQ = a~(1); a~(2) is the simple root, which corresponds to the vertex 

adjacent to that of ao(1), ao(3) is the simple root, which corresponds to the vertex 

adjacent to that of ao(~), and so on. If ao(io) corresponds to the first vertex (in 

this numeration) adjacent to "y0, the vertex which has three neighbours, then 

ao(io+l) is the simple root which corresponds to the vertex whose only neighbour 

is the vertex of "Yo. Next, ao(~0+2 ) = "Y0, and for i > i0 + 2, ao(~) are the simple 

roots which correspond to the vertices which follow "Y0 in the direction from "~0 

to the end vertex opposite that of aQ. (For example, for G = Es, we have 

a(1) = 8, a(2) = 7, a(3) ---- 6, a(4) ---- 5, a(5) = 2, a(6) ---- 4, 

a(7) = 3, a(8) = 1; aQ = as, "Y0 = an-) 

For each i, consider the diagram obtained from the Dynkin diagram of G, after 

removing the vertices which correspond to ao(j), 1 _< j <_ i - 1. The new diagram 

is the Dynkin diagram of a subgroup Li (G = Lo, L°(G) = L1). Consider in 

Li-1 the maximal parabolic subgroup Qi = LiU~, which corresponds to the root 

ao( O. U~ = U~(G) is the unipotent radical of Qi = Qi(G). Note that U~(G) is 

abelian for i _> 2. 

PROPOSITION 5.3: Let k be a field. Then {- Lie(U)k, G ¢ Es, 
(1) Ad(Ck)(Xz) A ~ g - s ,  C = Es = Ad (L(G)k)(X_~Q). 

(2) For i > 1 and T C Lie(Ui)k, 

X_,Q + T ~ Ad(Gk)(X~) ~-~  T = 0. 

Proof'. Denote 

/ - X_,~Q + Lie(Ui)k, i _>-2, 

Di = Ad(Gk)(X~) ~ Lie(U)k, i = 1 and G ¢ Es, 
g_~(k), i =  l and G =  Es. 

8 

We shall omit k from the notation. Consider the decomposition 

(5.14) V ---- U QwPHei~, 
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where Q = Q(G). Let 

K = A(G)\{~pn.~s} , J = A(G)\{C~Q}. 

Denote the corresponding sets of positive roots by ¢+ and ¢+, respectively. Note 

that  in case G = Es, Q = PHeis. By [C, Prop. 2.7.3], the representatives w in 

(5.14) can be taken to be Weyl elements, such that  

(5.15) w(K) c ¢+(G) and w-l (J)  C ¢+(G).  

The set of Weyl elements which satisfy (5.15) is denoted Dj, K. These are the 

elements of minimal length in Wj\WG/WK. (For S C A, Ws is the Weyl group 

of the Levi subgroup based on S.) Since Ad(PHeis)(Xz) = k*Xz, we have 

* A  (5.16) U k 
wEDJ, K 

Let w C Dj, K. Assume that  w(/3) > 0. If w(fl) is a root for U, then Xw(z) E U, 

and so Ad(Q)(X~(fl)) C Lie(U), and we get no contribution to the intersection 

Di. If w(fl) e ¢+, then X~(Z) • Lie(L(G)) and hence Ad(Q)(Xw(z)) C Lie(Q). 

Thus, there is no contribution in the case to Di. Assume, then, that  w(/3) < 0. 

This implies that  w(/3) is a root which occurs in U = U1, since otherwise w(/3) • 
-1  + - ¢ + ,  i.e. /3 • - w  (¢d).  By (5.15) it follows that  /3 is a negative root - -  a 

contradiction. So we may write 

( 5 . 1 7 )  = -n0 q - no.  

c~EJ 

where no >_ 1, n~ _> 0 are integers. Note that  when G ¢ Es, we have n~Q = 1, 

for every root "y = ~ c A  n~a  in the radical U, and when G = Es, n~Q = 1, 

unless "~ = fl, in which case n~Q = 2. Let us show that  only no = 1 in (5.17) 

contributes to Di. Indeed, the only other case is when no = 2, G = Es and 

w(fl) = -/3, and hence 

Ad(Q)(X~(~)) = A d ( Q ) ( X _ ~ ) =  Ad (PHei~) (X-~)  = 

= k* Ad(U)(X_~)  C k*X_~ ® go ® g~ @ ( O g - - y ) ,  

where -y in the last summand runs over certain positive roots, different from/3. 

Thus, the elements of Ad(Q)(X~(~)) have a nonzero projection on X_Z, and 

again do not contribute to Di. Assume that  no = 1 in (5.17), and we get 

(5.18) W-I(OIQ) ---~ --fl -- Z n~w-l (o~)"  

aEd 
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By (5.15), w- l ( a )  E ¢+(G), for a E J. Since n~ > 0, we see from (5.18) that 

n~ = 0 for (~ E J (otherwise, w-l(O~Q) is a root which is strictly smaller than 

-/3). Thus 

w(/3) = - ~ Q .  

In this case 

k* Ad(Q)(X~o(Z)) : k* Ad(Q)(X_~Q) = Ad(Q)(X_,~Q) 

(5.19) = Ad(LU)(X_~Q) C Ad(L)(X_~Q + Lie(L) + Lie(U)) 

= Ad(L)(X_~Q) + Lie(L) + Lie(U). 

Thus, in case i = 1, 

D1 = Ad(L)(X_~Q). 

Let i ___ 2 and T E Lie(U/) such that X_~Q + T E Di. From (5.19), it follows 

that 

X _ ~ Q  + T = Ad(7)(X_,Q + Z) 

where ~/¢ L and 

(5.20) 

We get that 

(5.21) 

and 

(5.22) 

X_~Q + Z E Ad(U)(X_.Q). 

Ad(7)(X_~Q) = X_~Q 

A d ( 7 ) ( Z )  = T. 

The condition (5.21) means that 

(5.23) 7 E Q{ = {g E Q2 ] Ad(g)X-~(1) = X - ~ I ) } .  

By (5.22), Z is nilpotent and, by (5.20), Z E Lie(U2). By (5.23), T = Ad(7)(Z) E 

Lie(U2). Since T E Lie(Ui), we get T = 0. The proof of Proposition 5.3 is 

complete. I I  

In the next theorem, we prove an invariance property of the Fourier coefficients 

0¢J. This is another aspect of the smallness and rigidity of 0a. By Theorem 5.2, 
~x_ O 

it is enough to consider OG ~ . Denote 

R = E1U. 
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(E 1 is defined in the proof of Theorem 5.2. Note that E = Q2.) R is almost the 

full stabilizer of ~X_~Q in Q (a one-dimensional torus is "missing"). Thus, we 

have 

f~X_,Q (rg) = fPx_.Q (g), Vr • R(F) 

for any automorphic form on Q(A). The automorphic form of 0c satisfies the 

following very strong property. 

THEOREM 5.4: For all f • t~c, 

(5.24) fCx_.Q (rg) -= fCx_,Q (g), Vr • R(A). 

Proof." We show that the Fourier expansion of f~X_,Q along Ui, i > 2, contains 

only the constant term, and we do it step by step. Consider the Fourier expan- 

sion of fCX_.Q along U2. The characters of U2(F)\U2(A), which appear in the 

expansion, have the form 

CT(expY) = ¢(B(V,T)),  V • Lie(U2)•, 

where T • Lie(U2)F. The corresponding Fourier coefficient of fCx_.Q is a 

Fourier coefficient of f along the group UIU2 with respect to the character 

CX_.Q+T(expV) -= ¢(B(V, X-c,o + T)), V • Lie(Vl)A ® Lie(U2)A. 

Denote this Fourier coefficient by f~x_,Q +r. We will use [MW] as in Theorem 

5.2 to show that fCx_,Q+r = 0, unless T = 0. Indeed, fix a finite place v and 

regard fCX_oQ+T(i) as a linear functional on OG~- Denote this functional by 

e(2) We have T ~ t J  • 

(5.25) ~,~(~) (eG~ (u)~) = Cx_oQ +r(u)e~,~(~)(2) 

D(2) defines a degenerate Whittaker model for 8v~ for u • (U1U2)A, ~ e Voa . ~T,v 
This model is relative to (X_~Q + T, ~), where ~ is the one-parameter subgroup 

(5.26) v(a) = ~-~(2)(a)v,.(,)(a). 

By (5.5), we have for a root ~ -- ~'~aEA na • a, 

(5.27) Ad ~(a)X.y = ama (n.~(~) +n%(2)) X.y. 
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Recall our notation 

gv,~ : {X e g, I Ad~o(a)X = a{X}. 

Then by (5.27) X_~q + T E gv,-ma, and moreover, 

(5.28) ( ~  9,,i = Lie(U1)F~ ® Lie(U2)F~, 
i>n'tG 

(5.29) ( ~  gu,~ = Lie(U1)F ~ G Lie(U2)Fv; 
i < - - r n  G 

g, is the sum of the spaces gu,o and those of (5.28) and (5.29). Thus, as in (5.9), 

we have 

x ~  + = w ;  = N~. ' = (U, U2)F~. 

(The case E6, is treated exactly as in Theorem 5.2, i.e. the main result of [MW] 

applies in this case exactly in the same way.) We conclude that 

X_~Q + T e Ad(G,)(X~) 

if p(2) is nonzero. By Proposition 5.3, it follows that T 0. Assume, by induc- " T , v  =- 

tion, that  for all 2 < j _< i - 1 and all T E Lie(Uj) F, 

f~x ,Q+r;j (g) =_ f fex_,Q (ug)¢TI(U)du 
U, (V)\Vj (A) 

is identically zero, unless T = 0. (¢T(expV) = ¢(B(V, T)) for V E Lie(Uj)A.) We 

prove that  f~X_.Q+'r;~ = 0 for all T • Lie(Ui)F, unless T = 0. Let T • Lie(Ui)F. 
Fix a finite place v, and, again, consider fCx_,Q +r;~ (I) as a linear functional e~l" 

on 0a~. It satisfies 

+r(~)er~(~) 

• ./,(i) is the character of for u E (U1U2"... "Ui)F ~ and ( e Voa,  'eX..Q+T 

( U 1 U 2  " . . . ' v i ) F ~ ,  

~ )  +Q+r(expV1. . . . .  expV/) = 0 (B(V1, X_aQ))O(B(V/, T)), 

for Vj E Lie(Uj)F • 1 < j < i. g(i) defines a degenerate Whittaker model for ' --  - -  T,I] 

Qa,, relative to (X_~Q + T, ~), where ~ is the one-parameter subgroup 

~ ( a )  : ~ o ( ~ ( a ) -  ~ o ~  (a)  • . . .  • ~ ( , ~  (a ) .  
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By (5.5), we have for a root 7 = ~aez~ no- a, 

Ad ~p(a)X.y = ama (n%(~)+n%(2)+...+,~,~(,) ) X-y. 

Thus, X_~Q + T C g.,-ma and also 

i 
(5.30) ~ g.,j -- ~)Lie(Uj)F~ , 

j kma j = l  

i 

(5.31) ( ~  g , , j = ~ L i e ( - O j ) F  ; 
j<_--mG j = l  

9~ is the sum of g~,0 and the spaces in (5.30) and (5.31). As in (5.9), we conclude 

that 

N :  -~- Ntv : N :  -~ ( U 1 U 2 . . . . . U i ) F v  

and that  

X_~Q + T C Ad (G~) (X~). 

By Proposition 5.3, this implies that T = 0. We have shown that fCx~Q is left 

invariant under the adele points of the standard maximal unipotent subgroup of 

G. Now the theorem follows, using (5.23). | 

6. On the  t h e t a  r ep r e sen t a t i on  of  S02m 

In this section, we prove the uniqueness (multiplicity one) of the automorphic 

theta representation of SO2m. We will abbreviate and write 0,~ instead of 0so2m. 

As a result, we will exhibit 0m as a family of residues of degenerate Eisenstein 

series induced on the parabolic subgroup of SO2m, which preserves an isotropic 

line. 

THEOREM 6.1 : Let 7r be an irreducible automorphic representation of SO2m (A) 

(which acts on the space V~). Assume that 7r is isomorphic to Om. Then zr =Om 

(i.e. v~ = Yore). 

Proof: Since 7r is isomorphic to 0,~, the proof of Theorem 5.2 applies to 7r as well. 

(All we needed there was that there is a (finite) place v such that 7r~ ~_ 0m,~.) 

Thus, in the Fourier expansion of 7r along U m =  U(SO2m), the only characters 
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/ \ 
which appear there are ~py, where Y =O or Y E Ad(L(SO2m)F)[X-~Q(so2~)). 

\ / 

Let us rewrite this in matrix notation, (1) 
Y E A d  7 (X-zm),  7 E S02m_2(F), 

1 

and 

~/'v I2m-2 ' = ~ ,  I2m-2 x' = ~ ((x.  ~/)1). 
1 

Here, for y E A 2~-2, (y)~ (or sometimes yi) denotes the i-th coordinate of y. As 

in (5.13), the Fourier expansion of f E 77 is 

(6.1) f(g) = fu,~(g) + Z f~(Tg)" 
-~eQ o_,(F)\So~_~(F) 

1 I o o Here ~ = ~' , Q.~-I is the stabilizer in SO2m-2 of tim (Qm-1 is the 
1 

stabilizer in SO2m-2 of under the natural left action of SO2m-2 on the 

h /F*~'~I 2 ( m -  1) dimensional space). Note that Qm-x = O(SO2m-2) = ~m-lt Jw,~-l. 

in (6.1) is short for ~ x _ ~ .  By Theorem 5.4, f~  satisfies the following 

invarianee property 

(6.2) fO(r9) = re(g) (1) 
^o U A° o = (Qm-1 { 7 E Qm-1})- Let for all r E HA, where R Qm-1 m = I'y 

1 
T: 77 ----* 0.~ be an isomorphism. We will show below (in Theorem 6.2) that for 

a place u the space of linear functionals on 0m,~, such that 

(6.3) g(Om,~(r)~) =¢u(r)g(~) ,  

is one dimensional. In (6.3), r E R.  and ¢~(r) is defined as ~bx_~.~,~ on Urn,. 
^ 0  and is extended trivially to Qm-l,u. If u is archimedean, g is assumed to be 



106 D. GINZBURG,  S. RALLIS AND D. SOUDRY Isr. J. Math .  

continuous in the C~-topology. As a result, we conclude that there is a nonzero 

complex number c, such that 

(6.4) ( T ( f )  ) ¢ (g) = c f¢  (g) 

for all f E 7r and g E SO2m(A). By (6.1) and (6.4), 

(6.5) T ( f )  - c f  -- ( T ( f )  - c f )  Urn. 

I f T  ¢ c.id, then V'  = { T ( f ) - c f  I f E ~r} defines an automorphic representation 

of SO2m(A), which is isomorphic to 0,,. The elements of V ~ satisfy, by (6.5), 

= ~um. As ill the end of the proof of Theorem 5.2, it follows (using the Howe- 

Moore theorem) that. ~ - 0. Thus T = c. id and so 7r = 0m. | 

The ulain ingredient of the proof of Theorem 6.1 is then the uniqueness, up to 

scalar multiples, of the functionals (6.3) at every place v. 

THEOREM 6.2: Let  v be a place of  F.  Then the space of  linear functionals 

on O . . . . .  which satisfy (6.3), and continuous in the C°°-topology, in case v is 

archimedean, is one dimensional. 

Proof" Since 0m,. is a quotient of Ira,, = IndSOl'(F~)Pm,v t ~ s m + ½  , Srn - -  2m-2m-3 (p,,, = 

P ( S 0 2 , , ) ) ,  it is enough to show the same uniqueness statement on L . . . .  This 

will be shown using Bruhat theory. We will do the archimedean case only. The 

finite case is similar and is much simpler. We omit reference to v ill the course 

of this proof. Put  Ira(s) = Ind s°2" @:½ and consider 

HomR(Im(s), ~],) -~ SilR (Ira(s), ¢ -L) --~ Bilsolm (Ira(s), Ind~ °~m ~,-1). 

Bi l l  denotes G-equivariant continuous bilinear forms, Ind~ denotes compact 

(mod R) induction. The last isomorphism is by Frobenius reciprocity. Note 

that  R is unimodular. By Bruhat theory [W, Theorem 5.3.2.3], 

dim (BilDm (I,~(s),Ind~ D'~ ~ - 1 ) ) (  
O 0  

[/.~I/2"~y£-IAV ~/,-1 (~s "~"t'~ 

"rEP,.n\D,~/R k=0 

s 3' Denote each summand by i3",k(s). Here (~p~) (b) = ~ (7b7-~),  for b P~ 

. ~ - I P m T N R ;  6. r is the modular factor for the group 7-1PmTNR; A v is the dual 3",k 

of A.r,k = Symk(A3",l), where A3".l is the coadjoint action of 7-1Pm7 A R on 

Lie(SO2m)c 
B3" = Lie(R)c + Ad(7-1)Lie(Pm)c ; 
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A7,o = 1. P \ S O 2 m / R  consists of four elements.  We pick the following represen- 
t t tat ives:  I ,  Wo, w0, w o w  o, where 

/1 
0 . . . . . . . . . . . . . . . . . .  1 

! I m - - 3  

, 0 1 
W 0 = W~rn_ 1 W~m-- 2 " . .  •" W~I W~3 W~4 " . . . •  W ~ n _ I  = 

: 1 0 : 

i I m - - 3  ~} 

'0 . . . . . . . . . . . . . . . . . .  1' 

i I m - 2  

: 0 1 : w o  = wlg,~ w ~ _  1 • . •.  • • • w/31w193 w/34 • • • • • w/3,,, = 

: 1 0 : 

: I r a - 3  i 
,i. . . . . . . . . . . . . . . . . . .  o ,  

For 7 = 1 or 7 -- w~, 7-1Pro7 N R :) Urn. We have 

~2-1 Q (6p,~) [U~ = ¢[U. and k P ~ ]  "y lure = 1. 

Now since A~,k is algebraic,  A~,k Iv., is unipotent  and so has no nontr ivial  eigen- 

values (on Urn). We conclude tha t  i . y , k ( s )  = 0 for all k and s. Similarly, for 

? = w o w ' o ,  we have 

1 
I2m-2 }. 

1 -  
q-~P~ n R D V = { 

Since ¢ l v  is nontrivial ,  we get, exact ly  as in the previous two cases, t ha t  i~,k (s) = 

0 for all k and s. Let 7 = wo. We have 

• . . 0  Y l  " ' "  Y m - 1  

w o l P m w o  n R = { a ( h ,  y ,  *) =- 

1 * ' ' ' * ' ' "  

h • 

0 h* 

Y ' - I  

0 

0 

I . 
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h in a(h, y, *) is in GLm-2 and y = @1 . . . .  , Ym-1); w is the matrix 

/~m--1 ) 
0 1 
1 0 

and for a matrix b, b ~ = w-lbw.  We have 

(5~pm) '~° (a(h, y, *)) = I det hi (m-1)*, 

5~1o (a(h, y, , ) )  = ]det hi 2-m, 

'¢'l~o,p,~0n n = 1. 

Thus, we consider, using a loose notation, 

(6.6) 3 - - m  V Bil~olpm~onR (Idethl  ( m < >  , Idethl = A~o,k ). 

The quotient B~ o is isomorphic to 

_0 

0 Vl 
• " _ 0  

b(v)= o 

0 - v m - 2  " - v l  
0 0 0 .. 0 

v(v ) } 
=- " E F m - 2  

0 Vm--2  

/ 

so that the action of a(h, 0, 0) through A~o. 1 on b(v) is via v ~ h 'v ,  and hence, 

via A~o.~ , it is through Symk(h*). In particular, the space (6.6) is zero, for all 

s and all k > 1, i.e. i~,o,k(s ) = 0, for a l l s  and all k >_ 1. For k = 0, the 

space (6.6) is nonzero, if and only if (m - 1)s - 3-m i.e. s = sin. Thus, - -  - -  2 ' 

HomR(Im(S),  ~P) = 0 for all s ~ 8 m ,  and for s = s m  it is of dimension at most 

one. This dimension equals one, since Om is a quotient of Ira(sin), and we know 

that HomR(0m, ¢) has positive dimension (using the global Fourier coefficient f ¢  

in (6.1)). This concludes the proof of Theorem 6.2. 1 

Remark  1: One can show directly that Homn(Im(sm) ,  ¢) is one dimensional, by 

constructing the following linear functional. Define, for ~ ,  a holomorphic section 
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in Im(s), 

A(~)(g) = / ~s(woug)¢-l(u)du, 
u~ 

1 y 0 
o 

¢ ( u ( y ) )  = 

1 w Y F m-1 

for y = (Yb--. ,Ym-1). 

We have 

A(G)(ug) -- ¢(u)A(G)(g) 

for u in the unipotent radical of R, and 

1 
1 

0 h* 
1 

1 

A(G) = i det hl(.~_t)~+ ~;3 A(G)(g). 

In particular, for s = sin, I det hi (rn-1)sm+ m;-a = i det hire_ 3 

i.e. A(Gm) g E m-2(~),  and this representation has the trivial 
I2 

representation (of Din-2) as a quotient. Composing A with this quotient yields 

an element of HomR(I,~(sm),¢).  All this is of course formal, but it can be 

justified by writing 

(6.7) d(G)(g) = f M~,~3~4 ...... ~-1 o M~, 2 (G)(wzmxz~ (Y)g)¢-I(y)Hy; 

M~ denotes an intertwining integral. The poles of M~2 are contained in those of 

(g. (2(m-- 1)s + m-- 2), and so/YI~2 is holomorphic at s = s,~; M~o~a . . . . .  wz~_~ 

is holomorphic at sm as well. This can be seen using Rallis' Lemma as in Lemma 

2.6. Finally, the integral (6.7) is a GL2-Whittaker type integral and it is known 

to be holomorphic. | 

Remark 2: Theorem 6.2 holds, with the same proof, for a group of type D,~. 

The arguments prior to Theorem 6.2 are general, and so Theorem 6.1 holds for 

a group of type D.~ as well. | 
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We return to the global situation. Consider the induced representation g,~(s) = 
i ,DIn(A) ;+)  .. naQ~(A )~ . Denote h(tl  . . . . .  tin) = d i a g ( t l , . . . , t m , t ~  1, . , t [1) .  Then 

~Q~ ( h ( t l , . . . , t m ) )  = Itll 2m-2. Let f (g,  s) be a holomorphic section in J,~(s) 
% 

and 

")'E Q ,,~ (F) \SO2~ (F) 

the corresponding Eisenstein series. As explained in Section 2, the normalizing 

factor is Ls(Dm,  Qr~, s) = @((2m - 2)s + 1)@((2m - 2)s + m - 1) where S is a 

finite set of places, containing those at infinity, and outside which f is unramified. 

Let E ~  (g, f ,  s) = Ls(Dm, Qm, S)EQ~ (g, f ,  s), the normalized Eisenstein series. 

As in Theorem 2.3, we have 

PROPOSITION 6.3: For n > 4, E ~ ( g , f , s )  has at most a simple pole at the 

point s m "~ = 2m-21, and it is obtained for some choice of  section f . 

Proof: As in the proof of Theorem 2.3, since Qm\SO2m/Qm has three (a ) representatives {I, w~m, w0}, we have, for g = h C SO2m(A), a E 
a - 1  

~ * ,  

(6.8) 

Q ~  I g ,  f ,  8 )  = EQm (ug, f, s)du 
U.~(F)\U~ (A) 

=[a[(2~-2)(~+l/2) f ( I, s) 

+ [alEQm_ ~ ( M ~ , ,  (s)f,  h, m - 
\ ?Tt - -  

+ lal(2m-2)(-~+½)M~o(s)f(I). 

In the second term of (6.8), we restrict M~z.~(s)f  to SO2m-2(A); 
rn--1 Mw~m (s)flDm_I(A) E Jm_l(-~_2s ). We have 

(6.9) 

Ls(Dm,Qr~,s)Eo. 1 (M,~,m (s) f ,h ,  m - 1) 
m -  m - 2  

= L s ( D m - 1 ,  rn - 1 2 s) k 

\ /@((2rn-  2)s + m -  1 ) ~  (s) f ,h ,  m -  1 ] EQm_I X S 
2)s + m m 2 
m - - 1  
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Here, we use the notat ions of Section 2. We also have 

(6.10) 

Ls(Dm, Qm, s)M~o(S)f = @((2m - 2)s )@((2m - 2)s - m + 2) )A~o(S)f 

= ~'((2rn - 2)s)¢((2m - 2)s - m + 1)A;o(S)f. 

Here A~o(S)f = l - l . e s  (~ . ( (2m - 2)s )¢ . ( (2m - 2)s - m + 2))- lA~o(S)f .  
Multiplying (6.8) by the normalizing factor, and using (6.9), (6.10), we get, for (° ) g =  h , 

g - 1  

(6.11) 

( E ~ ) u ~  (f, g, s) :M(2m-2)(~+½)Ls(Dm, Q,~, s)f(l, s) 
m - 1  

+ [a[g~m_l (nw,~ (s)f, h, -~-L--~_2 s) 

+ [a[(2m-2)(-~+½)¢((2m - 2)s) 

× ( ( (2m - 2)s - m + 2)A*o(s) f(I  ). 

' Consider We will soon show that  A~z,= (s) and A* o (s) are holomorphic at s = sin. 

the case m = 4. Using the triviali ty of D4, we can write 

EQ4 (1, f ,  s) --- Ep(sOs)(1, i f ,  s) 

• .sos(•) ~is+l/2. 
where f f  G lnap4(A ) P4 , i f (g)  = f(gr) and r is an outer  au tomorphism 

(coming from triviality),  which takes/34 to/32, D2 to ~31, /31 to/34 and fixes/33. 

Note tha t  s~ = ~ = s(D4). By Theorem 2.3 for this case (or ra ther  [KR1]) E* Q4 
has a simple pole at s~. By induction, it follows from (6.11) tha t  E~m has at 

' for m > 4. (Note tha t  m-1 , Subst i tu te  most  a simple pole at sin, _ m_2Sm = S'm_l. ) 
f = f(m), the everywhere normalized unramified vector. Then  (6.11) reads 

( E~.)  vm (g, fo, s) =]al(2m-2)(s+½) n¢(Dm, Qm, s) 

(6.12) + [alEQ'~-I ( f(°m-1)'h' mm- 2s ) 1  

+ [al(2m-2)(-~+½1s((2m - 2)s) 

• { ( ( 2 m -  2 ) s -  m + 2). 

The  first t e rm in (6.12) is holomorphic,  the third te rm has a simple pole at 
! ! 

s = s.~, and the second term has also a simple pole at s.~ (by induction).  The  

residues of the second term and the third te rm do not cancel due to their different 
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exponents  in a. Finally, as in the proofs of Lemmas 2.4-2.6, it is enough to prove 

the holomorphici ty of Mw,~(s)fv at s' m at a place v (w = w~.~, w0). For w = wzm, 

1 2 the poles of M~,~(s)f~ are contained in those of ~,( ( -p  + (s + ~) PQm,/3,~)) = 
' As for w w0, recall tha t  ~ ( ( 2 m  - 2)s + m - 2), which is holomorphic at sm. = 

A* (s)f~ = ((~((2rn - 2)s)(~((2m - 2)s - m + 1))-lM~o,.(s)f~. ~V0,u 

/ The  factor (~((2rn - 2)s) may be ignored, since it contributes ( . (1 )  at s = s m. 
Write 

M..~o,.(s ) = M ~ 2 ~ 3  ..... ~.~ , v o M,~ 1,~ o M,~ 3,~ o M~o~4,~ o . . . .  Mw~ . . . .  

V P  -2 r rr2m - 2)s + j ) ,  The  poles of l-Ii¢~ M ~ , ~  are contained in those of ~tj=o s~ t  
' Pu t  w' which is holomorphic at s m. = w~ w~3 • ... • wz,,. Then  

Im-1 
o 

W ! ~ . 

I m - i  
0 1 

- O f f  ~ 

0 1 1 0 
Ira-1 0 Ira-1 

Thus w' e P(SO2m) ~ - P~  = M(SO2m)"; .  V(Dm) ~ =- M,~. V,~. Put  ~ = 

Mwzl,~.Mwz3,~ .. . . .Mwz~,~(f) and consider ~lMa" Let ~s = (~IM~) ~ and idea- 

((  a ,) t ify M,~ with GLm. Then  ~s e IndGpL~. F~) 0 t ---* ]deta]  It] -(2m-2)s . 

Pro-l,1 is the (m - 1, 1) type parabolic subgroup of GLm. Thus, we have to 

consider the poles of 

(6.13) / ~ , ( ( 0 1  / t o O 1 ) ( 1 0  / m Z l ) ) d z = / ~ : ( / z  - 1 0 l ) d Z .  

H e r e ~ s ( g ) = ~ ( (  0 10) Im-1 ). By Rallis' Lemma (as in Lemma 2.6), we may 

' (01 I m - l ) p m _ l , , .  For assume tha t  ~ ,  is supported in the open cell Pro-l,1 0 

such functions, it is easy to see tha t  the integral (6.12) can be wri t ten in the form 

(6.14) / f ¢(v,x),x,(2m-2)s-m+2dvd*x= / ~P(x),x,(2m-2)s-m+2d*x 

F* F ~  -2 F* 

where ¢ E S(F~  -2 × F,) and O(x) = fFm-2 ¢(v,x)dv. Thus, the integral (6.14) 

is controlled (as far as poles are concerned) by ~ ( ( 2 r n  - 2)s - m + 2) as we 

wanted. Proposi t ion 6.3 is now proved. | 

' of E* From (6.11), we get Denote  by ~,~ the space of residues at 8 m Qm" 
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COROLLARY 6.4: We have 

(6.15) (~m)V~tD~_~(A) C 1 ® ~m-] 

and h(a) = h(a, 1 . . . .  ,1) acts on 1 by lal m - 2  a n d  on 0m-~  by lal. 

Since 0m is concentrated along the Borel subgroup, it follows from Corollary 

6.4 that  0,~ has the same exponents as those of Om and, by Proposition 3.1, we 

conclude 

COROLLARY 6.5: Orn consists of square integrable automorphic forms. 

Remark: The analogs of Proposition 6.3, Corollary 6.4 and Corollary 6.5 are 

clear for groups of type Din. See Remark 2.7. 

Write 0m = ~ i  0~) as a direct sum of irreducible, automorphic representations 

~-(i) _~ ( ~  ~(~)m,.. Clearly ~(i)m,~ is a quotient of Jm,~(S~m) for each i (and each u). 

By the results of [S], for finite u, and of [HT], for u archimedean, it follows that  

J,.,.(s~) has a unique quotient and it is unramified. Thus 

COROLLARY 6.6: 0.~ iS irreducible. 

PROPOSITION 6.7: For all places u, 

Proo~ We construct an intertwining operator from I,~,~(Sm)) to Jm,,(s ') .  
Let f~ be a holomorphic section in Ira(s). Then, for g E SO2m-2,,, ~(g) = (1) 
fs., g lies in Ira-1 (½), which has the trivial representation of SO2m-2,~ 

1 
as a quotient. Let T be a SO2m-2,v-invariant linear form on Ira-l(½) and con- (,..) 
sider A'(fsm ) = T(~). Since f~ I • = I t l (m-1 ) (~+~)L( I2m) ,  it follows 

t-1 

that A' induces (by considering g H A(g. f~m) on SO2m,,) an intertwining map 

.4: In (s,~) --* Jm(-s~).  Clearly, A is nontrivial on the unramified vector of 

I~(sm), which is cyclic for I~(sm). Thus the image of A is unramified. By the 

results of [S] for u finite and of [HT], for u archimedean, J~( - s~)  has a unique 

irreducible subrepresentation, and it is unramified. This representation is 0"m,~. 

Thus Ore,, is a quotient of Im,u(Sm) and hence "Om,u ~- Om,~. | 

From Theorem 6.1, we conclude 
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THEOREM 6.8: 

0m -- {Res~=~:. EQ~ (f, g, s)lf(', s) holomorphic section in J~(s)}. 

~C Remark: Consider the analogous automorphic representation 0., of Spin(A), 

,, ' (analogous Eisenstein series on Spin(A)). obtained by the residues of E~sc at s,~ 

As in Remark 2.7, EQf~(g,i*(~o~)) = EQ~(i(g),~o~), for a secton c2~ in g,~(s). 
By Theorem 6.8 and the discussion prior to Theorem 4.3, 0,~ is irreducible over 

/(Spin(A)). This implies that Span {g ~ Res~=~- E~,, (i(g),~o~)} affords an 

irreducible representation of Spin(A). Hence 0~ c is irreducible and equals 0~. As 

we have seen before, we conclude that for a group G of type D,,, if we construct 

the analogous representation 0a by the residues of E~(G) at s~., then OG equals 

0a as automorphic representations. 

Finally, let us relate Ress=.~ EQm (f, g, 8) to the 0-lift of the trivial represen- 

tation of SL2(A) to SO2.,,(A) (via the dual pair SO2.. x SL2 inside Sp,.). This is 

explained in [KR2], where (in this special case) they consider the Weil representa- 

tion ~z~, ~) of @2,. (A) (rank 2m) and restrict it to the dual pair SO2,. (A) x SL 2 (A) 

(g, is a nontrivial character of F\A). ,;~,~) acts on S(A2"'), and SO2,,(A) acts 

(") by the natural linear action. Let. ¢ E S(A) 2") and on S(A2m), through ~ ,  , 

consider the theta series 

(")(- h; 4)) = 

Let 

where, for h E SL2(A), 

~o~.~)(g,h)¢(x), g E SO2m(A), h e SL2(A). 
x E F  ~m 

E(h.,s) = Z ta'(Th)]s+l 
3,EBF\SL2 (F) 

h = ( a(h) * ) k(h) 0 a(h) -1 

is the Iwasawa decomposition. B is the Borel subgroup of SL2. E(h, s) is the 

unramified Eisenstein series on SL2(A) (given by the convergent series for Re(s) > 

1 and by its meromorphic continuation of Re(s) _< 1). Consider 

(6.16) I(g,s, we(m) (1, f~,~)¢)' = / ~"('~)'(g, h;w('~)(1, f~)¢)E(h,s)dh 
SL2 (F)\SL2 (A) 
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where f t~ = f~m - m 2 +  2m and ~,~ = H 2 -  2H + 4 X + X _  is the Casimir element 

for SL2 at one fixed archimedean place (with the usual notation). It is proved 

0(m)~ in [KR2, Prop. ,5.3.1] that h ~-~ 5, /g 'h;w¢ ( l ' f t ~ ) ¢ )  is rapidly decreasing 

on SL2(F)\SL2(A). Moreover, the function (6.16) (divided by s 2 - (m - 12)) 

is equal to an Eisenstein series of the form EO, m ( f ,g ,  2~-&-~) ( f  depends on 0) 

[KR2, 5.5.23]. Taking residue at s = 1, we get, using Theorem 6.8, 

THEOREM 6.9: 

0m = { / ~Wn(m)'[g' h; aJ(,m)(1, fY,~)¢)dh I ¢ E S(A 2"~ ) }. 

SL2(F)\SL2(A) 

Remark: Let i: Spin 

follows that 

, SO2m be the central isogeny. From Theorem 6.9, it 

SL~ (F)\SL2 (A) 
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